Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immunooncol Technol ; 24: 100724, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39220726

RESUMEN

Background: Despite considerable advancements in cancer immunotherapy, advanced melanoma still presents a substantial clinical challenge. In an effort to explore treatment options, we examined the immunotherapeutic potential of effector Vγ9Vδ2-T cells in vitro in a three-dimensional (3D) human organotypic melanoma-in-skin (Mel-RhS) model. Materials and methods: Vγ9Vδ2-T cells were introduced into Mel-RhS via intradermal injection and cultured within the tissue microenvironment for up to 3 days. Results: Vγ9Vδ2-T cells remained viable for up to 3 days and were in close proximity to or within tumor nests. Upon Mel-RhS dissociation, a fraction was shown to be decorated by melanoma-associated chondroitin sulfate proteoglycan (MCSP), demonstrating their ability to actively navigate the tumor microenvironment and trogocytose cancer cells. Investigation into the apparent trogocytosis revealed an enhanced activated state of MCSP-decorated Vγ9Vδ2-T cells, evidenced by increased expression levels of 4-1BB, NKp44, programmed cell death protein-1 (PD-1), and programmed death-ligand 1 (PD-L1), compared with their MCSP- counterpart. These findings suggest that Vγ9Vδ2-T cells, upon successfully contacting melanoma cells, actively recognize and acquire MCSP from these malignant cells. Evidence of actual tumor cell elimination, although not significant, was only obtained after preincubation of Mel-RhS with pamidronate, a phosphoantigen-inducing agent, indicating the need for additional T cell receptor-mediated signaling for Vγ9Vδ2-T cells to reach their full oncolytic potential. Conclusions: This study highlights the viability and persistence of Vγ9Vδ2-T cells within the 3D microenvironment, their migratory and antitumor functionality, and the suitability of the model for testing T cell-based therapies, contributing both to the understanding of Vγ9Vδ2-T cell biology and their application in cancer immunotherapy.

2.
Br J Dermatol ; 176(1): 116-126, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27377288

RESUMEN

BACKGROUND: The pathogenesis underlying keloid formation is still poorly understood. Research has focused mostly on dermal abnormalities, while the epidermis has not yet been studied. OBJECTIVES: To identify differences within the epidermis of mature keloid scars compared with normal skin and mature normotrophic and hypertrophic scars. METHODS: Rete ridge formation and epidermal thickness were evaluated in tissue sections. Epidermal proliferation was assessed using immunohistochemistry (Ki67, keratins 6, 16 and 17) and with an in vitro proliferation assay. Epidermal differentiation was evaluated using immunohistochemistry (keratin 10, involucrin, loricrin, filaggrin, SPRR2, SKALP), reverse-transcriptase polymerase chain reaction (involucrin) and transmission electron microscopy (stratum corneum). RESULTS: All scars showed flattening of the epidermis. A trend of increasing epidermal thickness correlating to increasing scar abnormality was observed when comparing normal skin, normotrophic scars, hypertrophic scars and keloids. No difference in epidermal proliferation was observed. Only the early differentiation marker involucrin showed abnormal expression in scars. Involucrin was restricted to the granular layer in healthy skin, but showed panepidermal expression in keloids. Normotrophic scars expressed involucrin in the granular and upper spinous layers, while hypertrophic scars resembled normotrophic scars or keloids. Abnormal differentiation was associated with ultrastructural disorganization of the stratum corneum in keloids compared with normal skin. CONCLUSIONS: Keloids showed increased epidermal thickness compared with normal skin and normotrophic and hypertrophic scars. This was not due to hyperproliferation, but possibly caused by abnormal early terminal differentiation, which affects stratum corneum formation. Our findings indicate that the epidermis is associated with keloid pathogenesis and identify involucrin as a potential diagnostic marker for abnormal scarring.


Asunto(s)
Cicatriz Hipertrófica/patología , Epidermis/patología , Queloide/patología , Adolescente , Adulto , Biomarcadores/metabolismo , Biopsia , Diferenciación Celular , Células Cultivadas , Epidermis/ultraestructura , Femenino , Proteínas Filagrina , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/farmacocinética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA