Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922677

RESUMEN

In this paper, we propose a new algorithm for distributed spectrum sensing and channel selection in cognitive radio networks based on consensus. The algorithm operates within a multi-agent reinforcement learning scheme. The proposed consensus strategy, implemented over a directed, typically sparse, time-varying low-bandwidth communication network, enforces collaboration between the agents in a completely decentralized and distributed way. The motivation for the proposed approach comes directly from typical cognitive radio networks' practical scenarios, where such a decentralized setting and distributed operation is of essential importance. Specifically, the proposed setting provides all the agents, in unknown environmental and application conditions, with viable network-wide information. Hence, a set of participating agents becomes capable of successful calculation of the optimal joint spectrum sensing and channel selection strategy even if the individual agents are not. The proposed algorithm is, by its nature, scalable and robust to node and link failures. The paper presents a detailed discussion and analysis of the algorithm's characteristics, including the effects of denoising, the possibility of organizing coordinated actions, and the convergence rate improvement induced by the consensus scheme. The results of extensive simulations demonstrate the high effectiveness of the proposed algorithm, and that its behavior is close to the centralized scheme even in the case of sparse neighbor-based inter-node communication.

2.
Sensors (Basel) ; 19(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779096

RESUMEN

Maritime situational awareness at over-the-horizon (OTH) distances in exclusive economic zones can be achieved by deploying networks of high-frequency OTH radars (HF-OTHR) in coastal countries along with exploiting automatic identification system (AIS) data. In some regions the reception of AIS messages can be unreliable and with high latency. This leads to difficulties in properly associating AIS data to OTHR tracks. Long history records about the previous whereabouts of vessels based on both OTHR tracks and AIS data can be maintained in order to increase the chances of fusion. If the quantity of data increases significantly, data cleaning can be done in order to minimize system requirements. This process is performed prior to fusing AIS data and observed OTHR tracks. In this paper, we use fuzzy functional dependencies (FFDs) in the context of data fusion from AIS and OTHR sources. The fuzzy logic approach has been shown to be a promising tool for handling data uncertainty from different sensors. The proposed method is experimentally evaluated for fusing AIS data and the target tracks provided by the OTHR installed in the Gulf of Guinea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA