Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 215: 106601, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34973606

RESUMEN

BACKGROUND: Spontaneous breathing (SB) effort during mechanical ventilation (MV) is an important metric of respiratory drive. However, SB effort varies due to a variety of factors, including evolving pathology and sedation levels. Therefore, assessment of SB efforts needs to be continuous and non-invasive. This is important to prevent both over- and under-assistance with MV. In this study, a machine learning model, Convolutional Autoencoder (CAE) is developed to quantify the magnitude of SB effort using only bedside MV airway pressure and flow waveform. METHOD: The CAE model was trained using 12,170,655 simulated SB flow and normal flow data (NB). The paired SB and NB flow data were simulated using a Gaussian Effort Model (GEM) with 5 basis functions. When the CAE model is given a SB flow input, it is capable of predicting a corresponding NB flow for the SB flow input. The magnitude of SB effort (SBEMag) is then quantified as the difference between the SB and NB flows. The CAE model was used to evaluate the SBEMag of 9 pressure control/ support datasets. Results were validated using a mean squared error (MSE) fitting between clinical and training SB flows. RESULTS: The CAE model was able to produce NB flows from the clinical SB flows with the median SBEMag of the 9 datasets being 25.39% [IQR: 21.87-25.57%]. The absolute error in SBEMag using MSE validation yields a median of 4.77% [IQR: 3.77-8.56%] amongst the cohort. This shows the ability of the GEM to capture the intrinsic details present in SB flow waveforms. Analysis also shows both intra-patient and inter-patient variability in SBEMag. CONCLUSION: A Convolutional Autoencoder model was developed with simulated SB and NB flow data and is capable of quantifying the magnitude of patient spontaneous breathing effort. This provides potential application for real-time monitoring of patient respiratory drive for better management of patient-ventilator interaction.


Asunto(s)
Respiración Artificial , Mecánica Respiratoria , Humanos , Distribución Normal , Respiración con Presión Positiva
2.
Crit Care Med ; 48(7): e592-e598, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32304418

RESUMEN

OBJECTIVES: We designed a novel respiratory dialysis system to remove CO2 from blood in the form of bicarbonate. We aimed to determine if our respiratory dialysis system removes CO2 at rates comparable to low-flow extracorporeal CO2 removal devices (blood flow < 500 mL/min) in a large animal model. DESIGN: Experimental study. SETTING: Animal research laboratory. SUBJECTS: Female Yorkshire pigs. INTERVENTIONS: Five bicarbonate dialysis experiments were performed. Hypercapnia (PCO2 90-100 mm Hg) was established in mechanically ventilated swine by adjusting the tidal volume. Dialysis was then performed with a novel low bicarbonate dialysate. MEASUREMENTS AND MAIN RESULTS: We measured electrolytes, blood gases, and plasma-free hemoglobin in arterial blood, as well as blood entering and exiting the dialyzer. We used a physical-chemical acid-base model to understand the factors influencing blood pH after bicarbonate removal. During dialysis, we removed 101 (±13) mL/min of CO2 (59 mL/min when normalized to venous PCO2 of 45 mm Hg), corresponding to a 29% reduction in PaCO2 (104.0 ± 8.1 vs 74.2 ± 8.4 mm Hg; p < 0.001). Minute ventilation and body temperature were unchanged during dialysis (1.2 ± 0.4 vs 1.1 ± 0.4 L/min; p = 1.0 and 35.3°C ± 0.9 vs 35.2°C ± 0.6; p = 1.0). Arterial pH increased after bicarbonate removal (7.13 ± 0.04 vs 7.21 ± 0.05; p < 0.001) despite no attempt to realkalinize the blood. Our modeling showed that dialysate electrolyte composition, plasma albumin, and plasma total CO2 accurately predict the measured pH of blood exiting the dialyser. However, the final effluent dose exceeded conventional doses, depleting plasma glucose and electrolytes, such as potassium and phosphate. CONCLUSIONS: Bicarbonate dialysis results in CO2 removal at rates comparable with existing low-flow extracorporeal CO2 removal in a large animal model, but the final dialysis dose delivered needs to be reduced before the technique can be used for prolonged periods.


Asunto(s)
Bicarbonatos/uso terapéutico , Dióxido de Carbono/sangre , Soluciones para Diálisis/uso terapéutico , Diálisis/métodos , Hipercapnia/terapia , Animales , Proteínas Sanguíneas/análisis , Electrólitos/sangre , Femenino , Hemoglobinas/análisis , Respiración Artificial , Porcinos
3.
ACS Biomater Sci Eng ; 5(2): 478-486, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405813

RESUMEN

Sepsis-related bone diseases are rarely reported although many ICU patients are diagnosed with bone damage after prolonged immobility. In this work, cortical bone of femurs from Sprague-Dawley rats under mild sepsis condition are investigated by using Scanning Probe Microscopy (SPM) to study the influence of sepsis on the changes of structure, chemistry, and elastic modulus of bone microconstituents, i.e., collagen fibers and mineral. The results show that there are significant changes on elastic modulus, shape, and chemical composition of collagen fibers 24 h after the sepsis insult, but all of the changes are recovered to almost normal 96 h after the insult. These phenomena are found to be associated with demineralization of the collagen fiber. For the mineral constituents in bone, the elastic modulus decreases significantly 96 h after the insult, showing slower responses compared with those in the collagen fibers. Particle analysis reveals that the size of the mineral particles decreases continuously and significantly with the time after the sepsis insulting. This work reveals the responding processes of bone microconstituents to sepsis in rat mode and, hence, can provide an insight into the pathogenesis of sepsis related human bone damage.

4.
ASAIO J ; 65(6): 605-613, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30281542

RESUMEN

Extracorporeal carbon dioxide removal (ECCO2R) devices remove CO2 directly from blood, facilitating ultraprotective ventilation or even providing an alternative to mechanical ventilation. However, ECCO2R is not widely available, whereas dialysis is available in most intensive care units (ICUs). Prior attempts to provide ECCO2R with dialysis, by removing CO2 in the form of bicarbonate, have been plagued by metabolic acidosis. We hypothesized that bicarbonate dialysis is feasible, provided the plasma strong ion difference is maintained. We used a mathematical model to investigate the effects of bicarbonate removal on pH and CO2 in plasma, and performed in-vitro experiments to test CO2 removal using three dialysates with different bicarbonate concentrations (0, 16, and 32 mmol·L). Our modeling predicted a reduction in partial pressures of CO2 (PCO2) and increased pH with progressive lowering of plasma bicarbonate, provided strong ion difference and plasma proteins (Atot) were maintained. In our in-vitro experiments, total CO2 removal, scaled up to an adult size filter, was highest with our dialysate containing no bicarbonate, where we removed the equivalent of 94 ml·min (±3.0) of CO2. Under the same conditions, our dialysate containing a conventional bicarbonate concentration (32 mmol·L) only removed 5 ml·min (±4; p < 0.001). As predicted, pH increased following bicarbonate removal. Our data show that dialysis using low bicarbonate dialysates is feasible and results in a reduction in plasma PCO2. When scaled up, to estimate equivalent CO2 removal with an adult dialysis circuit, the amount removed competes with existing low-flow ECCO2R devices.


Asunto(s)
Bicarbonatos/sangre , Dióxido de Carbono/sangre , Circulación Extracorporea/métodos , Prueba de Estudio Conceptual , Diálisis Renal/métodos , Adulto , Dióxido de Carbono/aislamiento & purificación , Soluciones para Diálisis/análisis , Circulación Extracorporea/instrumentación , Humanos , Modelos Teóricos
5.
Crit Care Med ; 45(12): e1254-e1261, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28991829

RESUMEN

OBJECTIVES: Survivors of critical illness have an increased prevalence of bone fractures. However, early changes in bone strength, and their relationship to structural changes, have not been described. We aimed to characterize early changes in bone functional properties in critical illness and their relationship to changes in bone structure, using a sepsis rodent model. DESIGN: Experimental study. SETTING: Animal research laboratory. SUBJECTS: Adult Sprague-Dawley rats. INTERVENTIONS: Forty Sprague-Dawley rats were randomized to cecal ligation and puncture or sham surgery. Twenty rodents (10 cecal ligation and puncture, 10 sham) were killed at 24 hours, and 20 more at 96 hours. MEASUREMENTS AND MAIN RESULTS: Femoral bones were harvested for strength testing, microCT imaging, histologic analysis, and multifrequency scanning probe microscopy. Fracture loads at the femoral neck were significantly reduced for cecal ligation and puncture-exposed rodents at 24 hours (83.39 ± 10.1 vs 103.1 ± 17.6 N; p = 0.014) and 96 hours (81.60 ± 14.2 vs 95.66 ± 14.3 N; p = 0.047). Using multifrequency scanning probe microscopy, collagen elastic modulus was lower in cecal ligation and puncture-exposed rats at 24 hours (1.37 ± 0.2 vs 6.13 ± 0.3 GPa; p = 0.001) and 96 hours (5.57 ± 0.5 vs 6.13 ± 0.3 GPa; p = 0.006). Bone mineral elastic modulus was similar at 24 hours but reduced in cecal ligation and puncture-exposed rodents at 96 hours (75.34 ± 13.2 vs 134.4 ± 8.2 GPa; p < 0.001). There were no bone architectural or bone mineral density differences by microCT. Similarly, histologic analysis demonstrated no difference in collagen and elastin staining, and C-X-C chemokine receptor type 4, nuclear factor kappa beta, and tartrate-resistant acid phosphatase immunostaining. CONCLUSIONS: In a rodent sepsis model, trabecular bone strength is functionally reduced within 24 hours and is associated with a reduction in collagen and mineral elastic modulus. This is likely to be the result of altered biomechanical properties, rather than increased bone mineral turnover. These data offer both mechanistic insights and may potentially guide development of therapeutic interventions.


Asunto(s)
Fémur/patología , Sepsis/patología , Animales , Densidad Ósea/fisiología , Huesos/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fémur/diagnóstico por imagen , Masculino , Microscopía de Sonda de Barrido , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA