Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473536

RESUMEN

In recent decades, the requirements for plain bearing materials have continually increased, especially with new applications such as wind turbines, which require larger bearings. These new applications have completely different property profiles compared with, for example, bearings in automotive construction. Larger bearings need high strength and wear resistance, which established bearing materials cannot fulfill. Therefore, new alloy systems are required. This publication focuses on the influence of alloy composition and test temperature on the mechanical properties of ZnAlCu alloys. Centrifugally cast specimens were produced for the fabrication of test specimens, which were used to determine the mechanical and tribological properties. Fracture surface and wear trace analysis with scanning electron and light microscopy were used to determine occurring failure and wear mechanisms and to analyze the influence of microstructure on failure. Depending on the composition of the ZnAlCu alloys, up to three times higher strengths can be achieved compared with the white metal alloy SnSb12Cu6ZnAg. Furthermore, all the alloys investigated show good wear properties. Up to 11 wt.% aluminum and 1.5 wt.% copper, a significant decrease in the wear coefficient was observed. Knowledge about the correlation between microstructure, properties, and failure mechanisms of ZnAlCu alloys can be used to produce bearing metal alloys suitable for a wide range of applications. Since the strength values lie between those of white metals and bronze, new fields of application can also be accessed.

2.
Materials (Basel) ; 16(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37512191

RESUMEN

In this paper, the high strength and lightweight Al-Cu-Li alloy (AA2099) is considered in as-built and preheated conditions (440 °C, 460 °C, 480 °C, 500 °C, and 520 °C). The purpose of this study is to investigate the influence of laser powder bed fusion (LPBF) in situ preheating on precipitation microstructure, mechanical and corrosive properties of LPBF-printed AA2099 alloy compared to the conventionally processed and heat-treated (T83) alloy. It is shown that precipitations evolve with increasing preheating temperatures from predominantly globular Cu-rich phases at lower temperatures (as-built, 440 °C) to more plate and rod-like precipitates (460 °C, 480 °C, 500 °C and 520 °C). Attendant increase with increasing preheating temperatures are the amount of low melting Cu-rich phases and precipitation-free zones (PFZ). Hardness of preheated LPBF samples peaks at 480 °C (93.6 HV0.1), and declines afterwards, although inferior to the T83 alloy (168.6 HV0.1). Preheated sample (500 °C) shows superior elongation (14.1%) compared to the T83 (11.3%) but falls short in tensile and yield strength properties. Potentiodynamic polarization results also show that increasing preheating temperature increases the corrosion current density (Icorr) and corrosion rate. Indicated by the lower oxide resistance (Rox), the Cu-rich phases compromise the integrity of the oxide layer.

3.
Materials (Basel) ; 13(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212906

RESUMEN

Al-Cu-Li alloys are famous for their high strength, ductility and weight-saving properties, and have for many years been the aerospace alloy of choice. Depending on the alloy composition, this multi-phase system may give rise to several phases, including the major strengthening T1 (Al2CuLi) phase. Microstructure investigations have extensively been reported for conventionally processed alloys with little focus on their Additive Manufacturing (AM) characterised microstructures. In this work, the Laser Powder Bed Fusion (LPBF) built microstructures of an AA2099 Al-Cu-Li alloy are characterised in the as-built (no preheating) and preheat-treated (320 °C, 500 °C) conditions using various analytical techniques, including Synchrotron High-Energy X-ray Diffraction (S-HEXRD). The observed dislocations in the AM as-built condition with no detected T1 precipitates confirm the conventional view of the difficulty of T1 to nucleate on dislocations without appropriate heat treatments. Two main phases, T1 (Al2CuLi) and TB (Al7.5Cu4Li), were detected using S-HEXRD at both preheat-treated temperatures. Higher volume fraction of T1 measured in the 500 °C (75.2 HV0.1) sample resulted in a higher microhardness compared to the 320 °C (58.7 HV0.1) sample. Higher TB volume fraction measured in the 320 °C sample had a minimal strength effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA