Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 205(4): 134, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36959516

RESUMEN

The present study aimed to evaluate the potential and specificity of the inflammatory and antioxidant response of Microbe-Associated Molecular Patterns (MAMPs) in NIH-3T3 fibroblast cells, as well as in the healing process of skin wounds. Cells (NIH-3T3) were cultivated in supplemented specific medium. NIH-3T3 cells were treated with MAMPs (Bifidobacterium lactis or Lactobacillus casei or Lactobacillus gasseri or Lactobacillus paracasei or Streptococcus thermophilus), at two concentrations and insulted with LPS or H2O2. Cell viability, myeloperoxidase activity, nitrite/nitrate, oxidative damage and inflammatory parameters were measured. In addition, scratch assay was performed. Significant scratch closure was observed after 24 h and 48 h, and the effect of 0.1 g/mL MAMPs on wound healing was found to be highly statistically significant. In the viability cellular assay, Lactobacillus showed better response in 0.1 g/mL dose, whereas B. lactis and S. thermophilus showed better response in 0.01 g/mL dose. There was reduction in IL-6 and IL-1ß levels in all treatments insulted with LPS. MAMP's showed preventive efficacy in reducing the effects caused by LPS. The MAMP's action in decreasing the production of ROS, inflammatory activity and increasing cell viability, besides significant cell proliferation during wound healing processes suggests remodeling mechanisms and new possibilities for wound healing.


Asunto(s)
Peróxido de Hidrógeno , Repitelización , Ratones , Animales , Células 3T3 NIH , Peróxido de Hidrógeno/farmacología , Lipopolisacáridos , Cicatrización de Heridas/fisiología , Estrés Oxidativo , Antioxidantes/farmacología
2.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36724248

RESUMEN

AIMS: The protective effects of Bacillus amyloliquefaciens(CCT7935), Bacillus subtilis(CCT7935), Bacillus licheniformis (CCT 7836), and Bacillus coagulans (CCT 0199) against lipopolysaccharide (LPS)-induced intestinal inflammation were investigated. METHODS AND RESULTS: Male Swiss mice were assigned into six groups: control group, LPS group, LPS + B. subtilis (CCT7935) group, LPS +   B. licheniformis (CCT 7836) group, LPS +   B. amyloliquefaciens (CCT7935) group, and LPS   + B. coagulans (CCT 0199) group. Each mouse of the groups Bacillus received 1 × 109 colony-forming units of Bacillus once daily by oral gavage during 30 days. Twenty-four hours after the last dose of Bacillus, all groups, except the control group, were intraperitoneally injected with LPS in the single dose of 15 mg kg-1. The mice were euthanized 24 h after the LPS administration. Histological alterations, myeloperoxidase activity, and nitrite levels were analyzed in the gut of mice and the inflammatory cytokines were analyzed in the gut and in the blood. The results demonstrate that the mice challenged with LPS presented the villi shortened and damaged, which were significantly protected by B. coagulans and B. amyloliquefaciens. Furthermore, all Bacillus tested were effective in preventing against the increase of myeloperoxidase activity, while B. amyloliquefaciens and B. subtilis prevented the increase of nitrite and IL-1ß levels in the gut of mice induced with LPS was decreased only B. subtilis. LPS also elevated the IL-1 ß, IL-6, and IL-10 levels in the blood, and these alterations were significantly suppressed by Bacillus, especially by B. subtilis. CONCLUSIONS: The study suggests that the Bacillus investigated in this study might be effective therapeutic agents for preventing intestinal inflammation, because they decrease the inflammatory process an protect against tissue damage.


Asunto(s)
Bacillus , Probióticos , Animales , Ratones , Masculino , Lipopolisacáridos , Peroxidasa , Nitritos , Probióticos/farmacología , Inflamación/inducido químicamente , Inflamación/prevención & control
3.
Mol Neurobiol ; 59(8): 5168-5178, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35674863

RESUMEN

The study evaluated the effects of supplementation with three different probiotic strains Bifidobacterium lactis (LACT GB™), Lactobacillus rhamnosus (RHAM GB™) and Lactobacillus reuteri (REUT GB™) on brain-intestinal immunomodulation in an animal model of LPS-induced inflammation. Fifty mice Balb/C were distributed into five groups: control; lipopolysaccharide (LPS); LPS + B. lactis (LACT GB™); LPS + L. rhamnosus (RHAM GB™); and LPS + L. reuteri (REUT GB™). The animals were supplemented with their respective probiotic microorganisms daily, for 30 days, at a concentration of 1 × 109 CFU/animal/day. After 30 days of supplementation, animals received the inflammatory insult by LPS (15 mg/kg). Behavioral tests, oxidative stress and inflammation were performed, as well as gut and brain histology. In the behavioral test, LPS + B. lactis group was less anxious than the other groups. Serum interleukin IL-1ß and IL-6 levels increased in all groups that received the LPS insult, and there was a reduction in inflammation in the supplemented groups when compared to the LPS group in brain and gut. There is a reduction in myeloperoxidase activity and oxidative stress in groups supplemented with probiotics. In intestine histological analysis occurs damage to the tissue integrity in the LPS group, in the other hand, occurs preservation of integrity in the probiotic supplemented animals. In the brain, infiltrates of perivascular inflammatory cells can be seen in the LPS group. The three probiotic studies showed efficient immunomodulating activity and ensured integrity of the intestinal barrier function, even after the severe insult by LPS. These results show the important role of probiotics in the gut-brain axis. Graphical abstract illustratively represents the gut-brain axis and how different probiotic strains influence the immunomodulatory response releasing different pro- and anti-inflammatory cytokines, and their role in the balance of dysbiosis.


Asunto(s)
Limosilactobacillus reuteri , Probióticos , Animales , Encéfalo , Endotoxinas , Inmunomodulación , Inflamación , Lipopolisacáridos/farmacología , Ratones , Probióticos/farmacología , Probióticos/uso terapéutico
4.
Curr Microbiol ; 79(1): 9, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34905100

RESUMEN

The discovery of the potential of paraprobiotics to exert different immunological benefits suggests that further studies should be carried out to determine their potential and mechanisms of action in modulating the immune system. The objective of this study was to investigate the immune response of several microbial-associated molecular patterns (MAMPS) used at different doses in macrophage cell lines RAW-264.7 stimulated with lipopolysaccharide (LPS). Two experiments were conducted. The first was performed to determine a dose response curve for each paraprobiotic (Bifidobacterium lactis, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus paracasei, and Streptococcus thermophilus). Further experiments were carried using only two doses (0.01 g/ml and 0.1 g/ml). RAW-264.7 cells were cultivated in Dubelcco's Modified Eagle's medium supplemented with fetal bovine serum and penicillin/streptomycin. Cells were incubated with LPS (1 µg/ml) and six concentrations of MAMPs were added. RAW-264.7 viability, myeloperoxidase activity, nitrite/nitrate concentration, reactive oxygen species production, oxidative damage, and inflammatory parameters were measured. In the LPS group, there was a significant reduction in cell viability. Myeloperoxidase and nitrite/nitrate concentrations demonstrated a better effect at 0.01 and 0.1 g/ml doses. There was a significant reduction in interleukin-6 (IL-6) levels at 0.1 g/ml dose in all paraprobiotics. IL-10 levels decreased in the LPS group and increased at 0.1 g/ml dose in all paraprobiotics. The dichlorofluorescin diacetate results were reinforced by the observed in oxidative damage. Paraprobiotics are likely to contribute to the improvement of intestinal homeostasis, immunomodulation, and host metabolism.


Asunto(s)
Lacticaseibacillus casei , Lipopolisacáridos , Bifidobacterium , Inmunidad , Inmunomodulación , Macrófagos , Streptococcus
5.
Oxid Med Cell Longev ; 2016: 1923754, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27965732

RESUMEN

The world coffee consumption has been growing for its appreciated taste and its beneficial effects on health. The residual biomass of coffee, originated in the food industry after oil extraction from coffee beans, called coffee beans residual press cake, has attracted interest as a source of compounds with antioxidant activity. This study investigated the chemical composition of aqueous extracts of coffee beans residual press cake (AE), their antioxidant activity, and the effect of topical application on the skin wound healing, in animal model, of hydrogels containing the AE, chlorogenic acid (CGA), allantoin (positive control), and carbopol (negative control). The treatments' performance was compared by measuring the reduction of the wound area, with superior result (p < 0.05) for the green coffee AE (78.20%) with respect to roasted coffee AE (53.71%), allantoin (70.83%), and carbopol (23.56%). CGA hydrogels reduced significantly the wound area size on the inflammatory phase, which may be associated with the well known antioxidant and anti-inflammatory actions of that compound. The topic use of the coffee AE studied improved the skin wound healing and points to an interesting biotechnological application of the coffee bean residual press cake.


Asunto(s)
Café/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Animales , Antioxidantes/química , Antioxidantes/farmacología , Masculino , Ratones , Piel/patología , Cicatrización de Heridas/efectos de los fármacos
6.
ScientificWorldJournal ; 2014: 817892, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25386618

RESUMEN

Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. The E. luridum frond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (I opt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed in E. luridum in response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in the E. luridum frond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation.


Asunto(s)
Ácido Abscísico/farmacología , Helechos/fisiología , Estrés Fisiológico , Agua/metabolismo , Brasil , Helechos/efectos de los fármacos , Helechos/metabolismo , Bosques , Luz , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA