Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Addict Biol ; 26(5): e13008, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33491227

RESUMEN

Neurotensin is an endogenous neuropeptide that acts as a potent modulator of ventral tegmental area (VTA) neurotransmission. The present study was aimed at determining VTA cell population and neurotensin receptor subtype responsible for the initiation of amphetamine-induced psychomotor activity and extracellular signal-regulated kinases (ERK1/2) sensitization. During an induction phase, rats were injected intra-VTA on two occasions, every second day, with [D-Tyr11 ]-neurotensin (D-Tyr-NT), SR142948 (a mix Ntsr1/Ntsr2 receptor subtype antagonist), SR48692 (a Ntsr1 antagonist), D-Tyr-NT + SR142498, D-Tyr-NT + SR48692, or the vehicle. Effects of intra-VTA drugs were evaluated at locomotor activity and ERK1/2 phosphorylation. Five days after the last VTA microinjection, the effect of a systemic injection of amphetamine was tested (sensitization test). Results show that D-Tyr-NT stimulated locomotor activity during the induction phase, an effect that was blocked by SR142948, but not SR48692. Amphetamine also induced significantly higher ambulatory activity in rats preinjected with D-Tyr-NT than in rats preinjected with the vehicle. This sensitization effect was again attenuated by SR142948, but not SR48692, hence suggesting that this effect is mediated by Ntsr2 receptors. To confirm this, we tested a highly selective Ntsr2 peptide-peptoid hybrid ligand, NT150. At the concentration tested, NT150 stimulated locomotor activity and lead to sensitized locomotor activity and a selective neurochemical (pERK1/2) response in tyrosine hydroxylase-positive neurons of the VTA. Both effects were prevented by SR142948. Taken together, these results show that neurotensin, acting on Ntsr2 receptor subtypes, stimulates locomotor activity and initiates neural changes (ERK1/2 phosphorylation) that lead to amphetamine-induced sensitization.


Asunto(s)
Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Receptores de Neurotensina/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Animales , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Ratas , Transmisión Sináptica/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
2.
Neuropharmacology ; 112(Pt A): 150-163, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27267684

RESUMEN

Previous studies have shown that activation of ventral midbrain NMDA receptors is required to initiate sensitization by amphetamine. In view of the recent evidence that neurotensin modulates ventral midbrain glutamate neurotransmission, we tested the hypothesis that neurotensin is acting upstream to glutamate to initiate sensitization to the behavioral and neurochemical effects of amphetamine. During a first testing phase, adult male rats implanted with bilateral ventral midbrain cannulae were injected every second day for three days with D-[Tyr11]neurotensin (1.5 nmol/side), the preferred NMDA GluN2A/B antagonist, CPP (40 or 120 pmol/side), the selective GluN2B antagonist, Ro04-5595 (200 or 1200 pmol/side), CPP (40 or 120 pmol/side) + D-[Tyr11]neurotensin (1.5 nmol/side) or Ro04-5595 (200 or 1200 pmol/side) + D-[Tyr11]neurotensin (1.5 nmol/side) and locomotor activity was measured immediately after the injection. Five days after the last central injection, the locomotor response or the expression of phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) in neurons of different limbic nuclei was measured following a systemic injection of amphetamine sulfate (0.75 mg/kg, i.p.). Results show that amphetamine induced significantly stronger locomotor activity and pERK1/2 expression in the nucleus accumbens shell and infralimbic cortex in neurotensin pre-exposed animals than in controls (vehicle pre-exposed). These sensitization effects initiated by neurotensin were prevented by CPP, but not Ro04-5595. These results support the hypothesis that neurotensin is stimulating glutamate neurotransmission to initiate neural changes that sub-serve amphetamine sensitization and that glutamate is acting on NMDA receptors that are mostly likely composed of GluN2A, but not GluN2B, subunits. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Asunto(s)
Anfetamina/administración & dosificación , Mesencéfalo/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Actividad Motora/efectos de los fármacos , Neurotensina/administración & dosificación , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/fisiología , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
3.
Neuroscience ; 334: 214-225, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27514573

RESUMEN

The dorsal diencephalic conduction system (DDC) is an important pathway of the brain reward circuitry, linking together forebrain and midbrain structures. The present work was aimed at describing the effect of a DDC lesion on the distribution of Fos-like immunoreactivity (FLIR) following intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH). Rats were implanted with monopolar electrodes and divided into three groups; the first two groups were trained to self-stimulate at the LH, whereas the third group received no stimulation and served as a control. Among the two groups that were trained for ICSS, one of them received a lesion at the DDC and was tested for ICSS on the subsequent 5days. On the last day of testing, control rats were placed in operant chambers without receiving any stimulation, and the remaining rats were allowed to receive the stimulation for 1h. All rats were then processed for FLIR. As previously shown, a lesion at the DDC resulted in significant attenuations of the rewarding effectiveness of LH stimulation. Results also show a higher FLIR in several reward-related areas following LH stimulation, especially in the hemisphere ipsilateral to the stimulation electrode. Compared to non-lesioned rats, lesioned animals had lower FLIR in certain brain regions, suggesting that those regions that were activated by the rewarding stimulation may be functionally interconnected with the DDC.


Asunto(s)
Diencéfalo/fisiología , Estimulación Eléctrica , Mesencéfalo/fisiología , Prosencéfalo/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Recompensa , Animales , Condicionamiento Operante/fisiología , Diencéfalo/patología , Diencéfalo/fisiopatología , Lateralidad Funcional , Inmunohistoquímica , Neuroestimuladores Implantables , Masculino , Mesencéfalo/patología , Mesencéfalo/fisiopatología , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Prosencéfalo/patología , Prosencéfalo/fisiopatología , Ratas Long-Evans , Autoestimulación
4.
Front Pharmacol ; 3: 153, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912617

RESUMEN

Dopamine D(2) receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D(2) antagonist in the striatum. First, we investigated D(2) antagonist-induced Nur77 mRNA in D(2L) receptor knockout mice. Surprisingly, deletion of the D(2L) receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A(2A) receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D(2) receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D(2) receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D(2) heteroreceptors and support a prominent role of glutamate in the effect of D(2) antagonists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA