Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 7(7): e07460, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34278035

RESUMEN

Octalithium tin (IV) oxide (Li8SnO6) is an important electrode material considered for lithium ion batteries (LIBs) because of its high lithium content. We employed atomistic simulations to examine the intrinsic defects, diffusion of Li-ions together with their migration energies and solution of potential dopants in Li8SnO6. The most thermodynamically favourable intrinsic defect is the Li Frenkel which increases the concentration of Li vacancies needed for the vacancy mediated diffusion of Li-ions in Li8SnO6. The calculated activation energy of migration of Li-ions (0.21eV) shows that the Li-ion conductivity in this material can be very fast. Promising isovalent dopants on the Li and Sn sites are Na and Ti, respectively. Doping of Ga on the Sn site can facilitate the formation of Li interstitials as well as oxygen vacancies in Li8SnO6. While the concentration of Li interstitials can enhance the capacity of this material, oxygen vacancies together with Li interstitials can lead to the loss of Li2O in Li8SnO6.

2.
ACS Appl Mater Interfaces ; 11(19): 17654-17662, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31007012

RESUMEN

Local modification of magnetic properties of nanoelements is a key to design future-generation magnonic devices in which information is carried and processed via spin waves. One of the biggest challenges here is to fabricate simple and miniature phase-controlling elements with broad tunability. Here, we successfully realize such spin-wave phase shifters upon a single nanogroove milled by a focused ion beam in a Co-Fe microsized magnonic waveguide. By varying the groove depth and the in-plane bias magnetic field, we continuously tune the spin-wave phase and experimentally evidence a complete phase inversion. The microscopic mechanism of the phase shift is based on the combined action of the nanogroove as a geometrical defect and the lower spin-wave group velocity in the waveguide under the groove where the magnetization is reduced due to the incorporation of Ga ions during the ion-beam milling. The proposed phase shifter can easily be on-chip integrated with spin-wave logic gates and other magnonic devices. Our findings are crucial for designing nanomagnonic circuits and for the development of spin-wave nano-optics.

3.
Materials (Basel) ; 11(4)2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29659555

RESUMEN

Carbon constitutes a significant defect in silicon (Si) as it can interact with intrinsic point defects and affect the operation of devices. In heavily irradiated Si containing carbon the initially produced carbon interstitial-carbon substitutional (CiCs) defect can associate with self-interstitials (SiI's) to form, in the course of irradiation, the CiCs(SiI) defect and further form larger complexes namely, CiCs(SiI)n defects, by the sequential trapping of self-interstitials defects. In the present study, we use density functional theory to clarify the structure and energetics of the CiCs(SiI)n defects. We report that the lowest energy CiCs(SiI) and CiCs(SiI)2 defects are strongly bound with -2.77 and -5.30 eV, respectively.

4.
Sci Rep ; 7(1): 13740, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062080

RESUMEN

The interaction of (quasi)particles with a periodic potential arises in various domains of science and engineering, such as solid-state physics, chemical physics, and communication theory. An attractive test ground to investigate this interaction is represented by superconductors with artificial pinning sites, where magnetic flux quanta (Abrikosov vortices) interact with the pinning potential U(r) = U(r + R) induced by a nanostructure. At a combination of microwave and dc currents, fluxons act as mobile probes of U(r): The ac component shakes the fluxons in the vicinity of their equilibrium points which are unequivocally determined by the local pinning force counterbalanced by the Lorentz force induced by the dc current, linked to the curvature of U(r) which can then be used for a successful fitting of the voltage responses. A good correlation of the deduced dependences U(r) with the cross sections of the nanostructures points to that pinning is primarily caused by vortex length reduction. Our findings pave a new route to a non-destructive evaluation of periodic pinning in superconductor thin films. The approach should also apply to a broad class of systems whose evolution in time can be described by the coherent motion of (quasi)particles in a periodic potential.

5.
Phys Rev Lett ; 91(23): 235302, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14683191

RESUMEN

We have created two sheets of approximately 1 K phonons in liquid (4)He at approximately 55 mK such that they intersect each other as they move towards a common point. If the two sheets have a small angle between them, they interact strongly and create a hot line in the liquid helium. This line is continuously fed with energy from the two sheets and loses energy by creating high-energy phonons. If the angle between the sheets is larger than approximately 30 degrees they do not interact but pass through each other. These results give direct evidence for the composition of the sheets: they comprise strongly interacting low-energy phonons which occupy a narrow cone in momentum space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA