Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bull Earthq Eng ; 20(14): 7873-7905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210981

RESUMEN

On October 30th, 2020, a magnitude 7.0 earthquake offshore off the northern coast of Samos, Greece, generated a tsunami that impacted the nearshore Greek islands and the Aegean coastline of Turkey. Here, we describe detailed results from several post-event field surveys, and report first wave arrival timing and polarity information as well as tsunami height/runup measurements, from five islands. In Chios, wave runup reached 1.38 m, in Samos ~ 3 m, in Fourni 1.57 m, in Thimena 1.46 m, and in Ikaria 1.18 m. This event marks two milestones. One, the General Secretariat for Civil Protection of Greece, disseminated a message through Greece's 1-1-2 Emergency Communications Service to all cell phones in the eastern Aegean geographical region, warning recipients to stay away from coastal areas. According to eyewitnesses, the message was received ~ 3-5 min prior to the second and largest flood in Vathi, as the first flood had not sufficiently alarmed the local authorities to evacuate residents. Two, we were able to infer complete tsunami hydrographs from measurements for the first two floods in Vathi, which suggests that the water level rose to about one meter overland flow depth in one minute.

2.
Sci Rep ; 8(1): 12876, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150698

RESUMEN

Changes in coastal morphology have broad consequences for the sustainability of coastal communities, structures and ecosystems. Although coasts are monitored locally in many places, understanding long-term changes at a global scale remains a challenge. Here we present a global and consistent evaluation of coastal morphodynamics over 32 years (1984-2015) based on satellite observations. Land losses and gains were estimated from the changes in water presence along more than 2 million virtual transects. We find that the overall surface of eroded land is about 28,000 km2, twice the surface of gained land, and that often the extent of erosion and accretion is in the order of km. Anthropogenic factors clearly emerge as the dominant driver of change, both as planned exploitation of coastal resources, such as building coastal structures, and as unforeseen side effects of human activities, for example the installment of dams, irrigation systems and structures that modify the flux of sediments, or the clearing of coastal ecosystems, such as mangrove forests. Another important driver is the occurrence of natural disasters such as tsunamis and extreme storms. The observed global trend in coastal erosion could be enhanced by Sea Level Rise and more frequent extreme events under a changing climate.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Algoritmos , Ecosistema , Humanos , Modelos Teóricos , Imágenes Satelitales
3.
Nat Commun ; 9(1): 2360, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915265

RESUMEN

Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34-76 cm under a moderate-emission-mitigation-policy scenario and of 58-172 cm under a business as usual scenario. Rising ESLs are mostly driven by thermal expansion, followed by contributions from ice mass-loss from glaciers, and ice-sheets in Greenland and Antarctica. Under these scenarios ESL rise would render a large part of the tropics exposed annually to the present-day 100-year event from 2050. By the end of this century this applies to most coastlines around the world, implying unprecedented flood risk levels unless timely adaptation measures are taken.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA