Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 5(12): 6641-6650, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258899

RESUMEN

Pyrophosphate arthropathy is the mineralization defect in humans caused by the deposition of microcrystals of calcium pyrophosphate dihydrate in joint tissues. As a potential therapeutic strategy for the treatment of pyrophosphate arthropathy, delivery of exogenous pyrophosphate-hydrolyzing enzymes, inorganic pyrophosphatases (PPases), to the synovial fluid has been suggested. Previously, we synthesized the conjugates of Escherichia coli PPase (Ec-PPase) with detonation synthesis nanodiamonds (NDs) as a delivery platform, obtaining the hybrid biomaterial retaining high pyrophosphate-hydrolyzing activity in vitro. However, most known PPases including Ec-PPase in the soluble form are strongly inhibited by Ca2+ ions. Because synovial fluid contains up to millimolar concentrations of soluble calcium, this inhibition might limit the in vivo application of Ec-PPase-based material in joint tissues. In this work, we proposed other bacterial PPases from Mycobacterium tuberculosis (Mt-PPase), which are resistant to the inhibition by Ca2+ ions, as an active PPi-hydrolyzing agent. We synthesized conjugates of Mt-PPase with NDs and tested their activity under various conditions. Unexpectedly, conjugates of both Ec-PPase and Mt-PPase with aminated NDs retained significant hydrolytic activity in the presence of well-known mechanism-based PPase inhibitors, fluoride or calcium. The incomplete inhibition of PPases by fluoride or calcium was found for the first time.

2.
Biointerphases ; 10(4): 041005, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26489420

RESUMEN

Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Nanodiamantes/química , Adsorción , Fenómenos Químicos , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/aislamiento & purificación , Escherichia coli/enzimología , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/aislamiento & purificación , Unión Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA