Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343224

RESUMEN

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Antígenos de Neoplasias
2.
J Magn Reson ; 309: 106626, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31678914

RESUMEN

This study shows how a copper plate could be used for frequency tuning of surface wired and wireless MRI coils. For this purpose, it is proposed to place the copper plate directly on their conducting circuit. This leads to increase in the resonance frequency of coils. The effect is most perceptible if the copper plate is comparable in size to the conducting circuit of radiofrequency (RF) coil. The experimental work was performed on a 7.05 T MR scanner using surface MRI coils operating on different resonance frequencies: 1H (300 MHz), 31P (121 MHz), 23Na (79 MHz), 13C (75 MHz). Application of copper plate for frequency tuning of wireless multi-turn multi-gap transmission line resonator (MTMG-TLR) was considered for the first time. The proposed method can be claimed if the nominal variable inductance or capacitance is not enough for tuning the resonance frequency of the MRI coil to a higher frequency range.

3.
NMR Biomed ; 31(8): e3952, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29944184

RESUMEN

Particular applications in preclinical magnetic resonance imaging require the entire body of an animal to be imaged with sufficient quality. This is usually performed by combining regions scanned with small coils with high sensitivity or long scans using large coils with low sensitivity. Here, a metamaterial-inspired design employing a parallel array of wires operating on the principle of eigenmode hybridization was used to produce a small-animal imaging coil. The coil field distribution responsible for the coil field of view and sensitivity was simulated in an electromagnetic simulation package and the coil geometrical parameters were optimized for whole-body imaging. A prototype coil was then manufactured and assembled using brass telescopic tubes with copper plates as distributed capacitance. Its field distribution was measured experimentally using the B1+ mapping technique and was found to be in close correspondence with the simulated results. The coil field distribution was found to be suitable for large field of view small-animal imaging and the coil image quality was compared with a commercially available coil by whole-body scanning of living mice. Signal-to-noise measurements in living mice showed higher values than those of a commercially available coil with large receptive fields, and rivalled the performance of small receptive field and high-sensitivity coils. The coil was deemed to be suitable for some whole-body, small-animal preclinical applications.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Ondas de Radio , Imagen de Cuerpo Entero , Animales , Simulación por Computador , Riñón/diagnóstico por imagen , Ratones Endogámicos BALB C , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA