Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(4): 3447-3455, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252695

RESUMEN

Ultrafast all-optical modulation with optically resonant nanostructures is an essential technology for high-speed signal processing on a compact optical chip. Key challenges that exist in this field are relatively low and slow modulations in the visible range as well as the use of expensive materials. Here we develop an ultrafast all-optical modulator based on MAPbBr3 perovskite metasurface supporting exciton-polariton states with exceptional points. The additional angular and spectral filtering of the modulated light transmitted through the designed metasurface allows us to achieve 2500% optical signal modulation with the shortest modulation time of 440 fs at the pump fluence of ∼40 µJ/cm2. Such a value of the modulation depth is record-high among the existing modulators in the visible range, while the main physical effect behind it is polariton condensation. Scalable and cheap metasurface fabrication via nanoimprint lithography along with the simplicity of perovskite synthesis and deposition make the developed approach promising for real-life applications.

2.
Light Sci Appl ; 9: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140218

RESUMEN

Excitonics, an alternative to romising for processing information since semiconductor electronics is rapidly approaching the end of Moore's law. Currently, the development of excitonic devices, where exciton flow is controlled, is mainly focused on electric-field modulation or exciton polaritons in high-Q cavities. Here, we show an all-optical strategy to manipulate the exciton flow in a binary colloidal quantum well complex through mediation of the Förster resonance energy transfer (FRET) by stimulated emission. In the spontaneous emission regime, FRET naturally occurs between a donor and an acceptor. In contrast, upon stronger excitation, the ultrafast consumption of excitons by stimulated emission effectively engineers the excitonic flow from the donors to the acceptors. Specifically, the acceptors' stimulated emission significantly accelerates the exciton flow, while the donors' stimulated emission almost stops this process. On this basis, a FRET-coupled rate equation model is derived to understand the controllable exciton flow using the density of the excited donors and the unexcited acceptors. The results will provide an effective all-optical route for realizing excitonic devices under room temperature operation.

3.
Sci Rep ; 5: 11755, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26119218

RESUMEN

Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm(2)V(-1)s(-1) and the high channel current on/off ratio of ~10(5) of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA