Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 91(1): 013902, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32012602

RESUMEN

We describe a highly integrated automated experiment module that allows us to investigate the active Brownian motion of light-driven colloidal Janus-particle suspensions. The module RAMSES (RAndom Motion of SElf-propelled particles in Space) is designed for the sounding rocket platform MAPHEUS (MAterialPHysikalische Experimente Unter Schwerelosigkeit). It allows us to perform experiments under weightlessness conditions in order to avoid sedimentation of the Janus particles and thus to study the spatially three-dimensional dynamics in the suspension. The module implements a newly developed strong homogeneous light source to excite self-propulsion in the Janus particles. The light source is realized through an array of high-power light-emitting diodes and replaces the conventional laser source, thus reducing heat dissipation and spatial extension of the experiment setup. The rocket module contains ten independent sample cells in order to ease the systematic study of the effect of control parameters such as light intensity or particle concentration and size in a single sounding-rocket flight. For each sample cell, transmitted light intensities are stored for postflight analysis in terms of differential dynamical microscopy.

2.
Phys Rev E ; 100(4-1): 042601, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31770981

RESUMEN

We contrast the generic features of structural relaxation close to the idealized glass transition that are predicted by the self-consistent generalized Langevin equation theory (SCGLE) against those that are predicted by the mode-coupling theory of the glass transition (MCT). We present an asymptotic solution close to conditions of kinetic arrest that is valid for both theories, despite the different starting points that are adopted in deriving them. This in particular provides the same level of understanding of the asymptotic dynamics in the SCGLE as was previously done only for MCT. We discuss similarities and different predictions of the two theories for kinetic arrest in standard glass-forming models, as exemplified through the hard-sphere system. Qualitative differences are found for models where a decoupling of relaxation modes is predicted, such as the generalized Gaussian core model, or binary hard-sphere mixtures of particles with very disparate sizes. These differences, which arise in the distinct treatment of the memory kernels associated to self- and collective motion of particles, lead to distinct scenarios that are predicted by each theory for partially arrested states and in the vicinity of higher-order glass-transition singularities.

3.
J Phys Condens Matter ; 30(7): 074001, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29271364

RESUMEN

We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

4.
Phys Rev E ; 94(4-1): 042612, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841604

RESUMEN

The growth of the characteristic length scales both for diffusion and viscosity is investigated by molecular dynamics utilizing the finite-size effect in a binary Lennard-Jones mixture. For those quantities relevant to the diffusion process (e.g., the hydrodynamic value and the spatial correlation function), a strong system-size dependence is found. In contrast, it is weak or absent for the shear relaxation process. Correlation lengths are estimated from the decay of the spatial correlation functions. We find the length scale for viscosity decouples from the one of diffusivity, featured by a saturated length even in high supercooling. This temperature-independent behavior of the length scale is reminiscent of the unapparent structure change upon supercooling, implying the manifestation of configuration entropy. Whereas for the diffusion process, it is manifested by relaxation dynamics and dynamic heterogeneity. The Stokes-Einstein relation is found to break down at the temperature where the decoupling of these lengths happens.

5.
Phys Rev E ; 94(6-1): 060601, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085468

RESUMEN

Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t^{-3/2} long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t^{-5/2} decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t^{-2} decay.

6.
J Chem Phys ; 143(20): 204502, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26627963

RESUMEN

We present a hybrid-lattice Boltzmann (LB) algorithm for calculating the flow of glass-forming fluids that are governed by integral constitutive equations with pronounced nonlinear, non-Markovian dependence of the stresses on the flow history. The LB simulation for the macroscopic flow fields is combined with the mode-coupling theory (MCT) of the glass transition as a microscopic theory, in the framework of the integration-through transients formalism. Using the combined LB-MCT algorithm, pressure-driven planar channel flow is studied for a schematic MCT model neglecting spatial correlations in the microscopic dynamics. The cessation dynamics after removal of the driving pressure gradient shows strong signatures of oscillatory flow both in the macroscopic fields and the microscopic correlation functions.

7.
J Chem Phys ; 143(4): 044512, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26233150

RESUMEN

We present a hybrid lattice Boltzmann algorithm for the simulation of flow glass-forming fluids, characterized by slow structural relaxation, at the level of the Navier-Stokes equation. The fluid is described in terms of a nonlinear integral constitutive equation, relating the stress tensor locally to the history of flow. As an application, we present results for an integral nonlinear Maxwell model that combines the effects of (linear) viscoelasticity and (nonlinear) shear thinning. We discuss the transient dynamics of velocities, shear stresses, and normal stress differences in planar pressure-driven channel flow, after switching on (startup) and off (cessation) of the driving pressure. This transient dynamics depends nontrivially on the channel width due to an interplay between hydrodynamic momentum diffusion and slow structural relaxation.

8.
J Chem Phys ; 140(16): 164507, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24784287

RESUMEN

We discuss pressure-driven channel flow for a model of shear-thinning glass-forming fluids, employing a modified lattice-Boltzmann (LB) simulation scheme. The model is motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions and captures a nonvanishing dynamical yield stress and the appearance of normal-stress differences and a flow-induced pressure contribution. The standard LB algorithm is extended to deal with tensorial, nonlinear constitutive equations of this class. The new LB scheme is tested in 2D pressure-driven channel flow and reproduces the analytical steady-state solution. The transient dynamics after startup and removal of the pressure gradient reproduce a finite stopping time for the cessation flow of yield-stress fluids in agreement with previous analytical estimates.

9.
Soft Matter ; 10(27): 4822-32, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24841537

RESUMEN

We present results from computer simulation and mode-coupling theory of the glass transition for the nonequilibrium relaxation of stresses in a colloidal glass former after the cessation of shear flow. In the ideal glass, persistent residual stresses are found that depend on the flow history. The partial decay of stresses from the steady state to this residual stress is governed by the previous shear rate. We rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-dynamics simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the predictions of the theory.

10.
Phys Rev Lett ; 110(21): 215701, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745896

RESUMEN

The history dependence of glasses formed from flow-melted steady states by a sudden cessation of the shear rate γ[over ˙] is studied in colloidal suspensions, by molecular dynamics simulations and by mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of γ[over ˙]t, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables but differing static properties.

11.
J Phys Condens Matter ; 24(46): 464105, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23114229

RESUMEN

We investigate the force-induced diffusive motion of a tracer particle inside a glass-forming suspension when a strong external force is applied to the probe (active nonlinear microrheology). A schematic model of mode-coupling theory introduced recently is extended to describe the transient dynamics of the probe particle, and used to analyze recent molecular-dynamics simulation data. The model describes non-trivial transient displacements of the probe before a steady-state velocity is reached. The external force also induces diffusive motion in the direction perpendicular to its axis. We address the relation between the transverse diffusion coefficient D(perpendicular) and the force-dependent nonlinear friction coefficient ζ. Non-diffusive fluctuations in the direction of the force are seen at long times in the MD simulation, while the model describes cross-over to long-time diffusion.

12.
Phys Rev Lett ; 108(25): 255701, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23004620

RESUMEN

We investigate the nonlinear response to shear stress of a colloidal hard-sphere glass, identifying several regimes depending on time, sample age, and the magnitude of applied stress. This emphasizes a connection between stress-imposed deformation of soft and hard matter, in particular, colloidal and metallic systems. A generalized Maxwell model rationalizes logarithmic creep for long times and low stresses. We identify diverging time scales approaching a critical yield stress. At intermediate times, strong aging effects are seen, which we link to a stress overshoot seen in stress-strain curves.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 011406, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23005416

RESUMEN

We discuss a schematic model of mode-coupling theory for force-driven active nonlinear microrheology, where a single probe particle is pulled by a constant external force through a dense host medium. The model exhibits both a glass transition for the host and a force-induced delocalization transition, where an initially localized probe inside the glassy host attains a nonvanishing steady-state velocity by locally melting the glass. Asymptotic expressions for the transient density correlation functions of the schematic model are derived, valid close to the transition points. There appear several nontrivial time scales relevant for the decay laws of the correlators. For the nonlinear friction coefficient of the probe, the asymptotic expressions cause various regimes of power-law variation with the external force, and two-parameter scaling laws.


Asunto(s)
Coloides/química , Vidrio/química , Modelos Químicos , Modelos Moleculares , Reología/métodos , Simulación por Computador , Dinámicas no Lineales , Transición de Fase
14.
Eur Phys J E Soft Matter ; 34(9): 106, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21959546

RESUMEN

We discuss the concept of a glass transition line in the temperature-shear-stress plane in the context of recent simulation data for a metallic melt and dense-packed granular systems. Analyzing these data within a schematic model of the mode-coupling theory for dense glass formers under shear, values for the critical dynamic yield stress (the stress resulting in the limit of arbitrarily slow shear, at the glass transition) are estimated. We discuss two possible scenarios, that of a continuous rise in the dynamic yield stress at the transition, and that of a discontinuous transition, and discuss the data range that needs to be covered to decide between the two cases. A connection is made to the two commonly drawn versions of the jamming diagram, one convex and one concave regarding to the shape of the solid region.

15.
J Phys Condens Matter ; 23(23): 234121, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21613710

RESUMEN

We discuss the dynamic behavior of a tagged particle close to a classical localization transition in the framework of the mode-coupling theory of the glass transition. Asymptotic results are derived for the order parameter as well as the dynamic correlation functions and the mean-squared displacement close to the transition. The influence of an infrared cutoff is discussed.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011504, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20866622

RESUMEN

We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

17.
Phys Rev Lett ; 102(24): 248302, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19659052

RESUMEN

We present a first-principles theory for the active nonlinear microrheology of colloidal model system; for a constant external force on a spherical probe particle embedded in a dense host dispersion, neglecting hydrodynamic interactions, we derive an exact expression for the friction. Within mode-coupling theory, we discuss the threshold external force needed to delocalize the probe from a host glass, and its relation to strong nonlinear velocity-force curves in a host fluid. Experimental microrheology data and simulations, which we performed, are explained with a simplified model.

18.
Phys Rev Lett ; 103(20): 205901, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20365994

RESUMEN

We study by molecular dynamics computer simulation a binary soft-sphere mixture that shows a pronounced difference in the species' long-time dynamics. Anomalous, power-law-like diffusion of small particles arises that can be understood as a precursor of a double-transition scenario, combining a glass transition and a separate small-particle localization transition. Switching off small-particle excluded-volume constraints slows down, rather than enhances, small-particle transport.

19.
Phys Rev Lett ; 101(9): 095701, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18851623

RESUMEN

The interplay of slow dynamics and thermodynamic features of dense liquids is studied by examining how the glass transition changes depending on the presence or absence of Lennard-Jones-like attractions. Quite different thermodynamic behavior leaves the dynamics unchanged, with important consequences for high-pressure experiments on glassy liquids. Numerical results are obtained within mode-coupling theory (MCT), but the qualitative features are argued to hold more generally. A simple square-well model can be used to explain generic features found in experiment.

20.
J Chem Phys ; 126(13): 134109, 2007 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-17430018

RESUMEN

Brownian dynamics algorithms integrate Langevin equations numerically and allow to probe long time scales in simulations. A common requirement for such algorithms is that interactions in the system should vary little during an integration time step; therefore, computational efficiency worsens as the interactions become steeper. In the extreme case of hard-body interactions, standard numerical integrators become ill defined. Several approximate schemes have been invented to handle such cases, but little emphasis has been placed on testing the correctness of the integration scheme. Starting from the two-body Smoluchowski equation, the authors discuss a general method for the overdamped Brownian dynamics of hard spheres, recently developed by one of the authors. They test the accuracy of the algorithm and demonstrate its convergence for a number of analytically tractable test cases.


Asunto(s)
Química Física/métodos , Algoritmos , Difusión , Dureza , Modelos Estadísticos , Modelos Teóricos , Probabilidad , Programas Informáticos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA