Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057856

RESUMEN

The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.

2.
Materials (Basel) ; 16(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37297272

RESUMEN

Polyacrylic acid (PAA)-coated magnetic nanoparticles (MNP@PAA) were synthesized and evaluated as draw solutes in the forward osmosis (FO) process. MNP@PAA were synthesized by microwave irradiation and chemical co-precipitation from aqueous solutions of Fe2+ and Fe3+ salts. The results showed that the synthesized MNPs have spherical shapes of maghemite Fe2O3 and superparamagnetic properties, which allow draw solution (DS) recovery using an external magnetic field. Synthesized MNP, coated with PAA, yielded an osmotic pressure of ~12.8 bar at a 0.7% concentration, resulting in an initial water flux of 8.1 LMH. The MNP@PAA particles were captured by an external magnetic field, rinsed in ethanol, and re-concentrated as DS in repetitive FO experiments with deionized water as a feed solution (FS). The osmotic pressure of the re-concentrated DS was 4.1 bar at a 0.35% concentration, resulting in an initial water flux of 2.1 LMH. Taken together, the results show the feasibility of using MNP@PAA particles as draw solutes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA