Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(36): 23203-23210, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34549121

RESUMEN

Synthesizing novel photocatalysts that can effectively harvest photon energy over a wide range of the solar spectrum for practical applications is vital. Porphyrin-derived nanostructures with properties similar to those of chlorophyll have emerged as promising candidates to meet this requirement. In this study, tetrakis(4-carboxyphenyl) porphyrin (TCPP) nanofibers were formed on the surface of ZnO nanoparticles using a simple self-assembly approach. The obtained ZnO/TCPP nanofiber composites were characterized via scanning electron microscopy, X-ray diffraction analysis, and ultraviolet-visible absorbance and reflectance measurements. The results demonstrated that the ZnO nanoparticles with an average size of approximately 37 nm were well integrated in the TCPP nanofiber matrix. The resultant composite showed photocatalytic activity of ZnO and TCPP nanofibers concomitantly, with band gap energies of 3.12 and 2.43 eV, respectively. The ZnO/TCPP photocatalyst exhibited remarkable photocatalytic performance for RhB degradation with a removal percentage of 97% after 180 min of irradiation under simulated sunlight because of the synergetic activity of ZnO and TCPP nanofibers. The dominant active species participating in the photocatalytic reaction were •O2 - and OH•, resulting in enhanced charge separation by exciton-coupled charge-transfer processes between the hybrid materials.

2.
Environ Technol ; 42(8): 1292-1301, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31496447

RESUMEN

In this work, we reported synthesis of a novel magnetically separable g-C3N4/Zn doped Fe3O4 composite (g-CN/ZnFe) by a simple polyol thermal method. The characteristics of the as-prepared composite was checked by XRD, SEM, TEM, XPS, PL technologies. The optimized weight ratio of g-C3N4 and Zn doped Fe3O4 was investigated. In addition, the photocatalytic activities of the composite products were checked by degradation of Cephalexin (CEX) under visible light. The results showed that g-CN/ZnFe composite with an added 20% g-C3N4 exhibited the highest photocatalytic activity for cephalexin under visible light irradiation. The improved photocatalytic activity of 20% g-CN/ZnFe can be ascribed to the low combination rate of photoinduced electron/hole pairs. Especially, g-CN/ZnFe can be recovered easily by using an external magnetic field and has the high stability after six runs. These properties of the g-CN/ZnFe as-prepared composite could be a promising photocatalyst for the degradation of pharmaceutical contaminants.


Asunto(s)
Cefalexina , Luz , Catálisis , Zinc
3.
Nanomaterials (Basel) ; 10(5)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370058

RESUMEN

The use of nano-additives is widely recognized as a cheap and effective pathway to improve the performance of lubrication by minimizing the energy loss from friction and wear, especially in diesel engines. In this work, a simple and scalable protocol was proposed to fabricate a graphene additive to improve the engine lubricant oil. Graphene nanoplates (GNPs) were obtained by a one-step chemical exfoliation of natural graphite and were successfully modified with a surfactant and an organic compound to obtain a modified GNP additive, that can be facilely dispersed in lubricant oil. The GNPs and modified GNP additive were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The prepared GNPs had wrinkled and crumpled structures with a diameter of 10-30 µm and a thickness of less than 15 nm. After modification, the GNP surfaces were uniformly covered with the organic compound. The addition of the modified GNP additive to the engine lubricant oil significantly enhanced the friction and antiwear performance. The highest reduction of 35% was determined for the wear scar diameter with a GNP additive concentration of approximately 0.05%. The mechanism for lubrication enhancement by graphene additives was also briefly discussed.

4.
J Ginseng Res ; 39(4): 304-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26869822

RESUMEN

BACKGROUND: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. METHODS: Ginsenoside Rb1 was heated using an isothermal machine at 80°C and 100°C and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. RESULTS: The rate constants were 0.013 h(-1) and 0.073 h(-1) for the degradation of ginsenosides Rb1 and Rg3 at 80°C, respectively. The corresponding rate constants at 100°C were 0.045 h(-1) and 0.155 h(-1). The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. CONCLUSION: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below 180°C, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA