Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Des Monomers Polym ; 21(1): 64-74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773971

RESUMEN

We report the preparation and characterization of three pyrimidine-based monomers, specifically: 1-(2-diallylaminoethyl)uracil, 1-(2-diallylaminoethyl)thymine and 1-(2-diallylaminoethyl)cytosine. Monomer synthesis was initiated by reaction of the pyrimidine with ethylene carbonate to form the hydroxyethyl adduct which was subsequently chlorinated to afford the chloroethyl intermediate. Reaction of the chloroethyl derivatives with diallylamine resulted in the desired monomers. We demonstrated a two-fold increase in the overall yield of the three monomers in comparison to reported procedures. The cyclopolymerization and cyclo-copolymerization of 1-(2-diallylaminoethyl)pyrimidine trifluoroacetate salts in water resulted in low-yield homopolymers. In contrast, the neutral 1-(2-diallylaminoethyl)pyrimidines cyclo-copolymerized with sulfur dioxide and V-50 initiator to yield the corresponding copolymers in higher yields ranging from 30 to 60%.

2.
Biomacromolecules ; 15(11): 4082-95, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25325886

RESUMEN

This article describes the enzyme-catalyzed "green" synthesis of an unnatural poly(amino acid). dl-Tyrosine was polymerized under environmentally friendly conditions using linear-dendritic laccase complexes as initiators and water as solvent. The influence of the dendron generation in the linear-dendritic copolymers, the monomer concentration, and time and temperature on the polymer yields and molecular masses was investigated. Depending on the reaction conditions poly(tyrosine) with molecular mass (Mw) up to 82 kDa could be obtained in yields ranging between 45 and 69%. It was found that the linear-dendritic laccase complexes can induce further chain growth upon addition of fresh monomer to the preformed poly(tyrosine) in a fashion resembling the classic "living" polymerization. The structure of the poly(tyrosine) was investigated by NMR, FT-IR, and MALDI-TOF and it was discovered that the polymer chains consist of phenol repeating units linked together by C-C and C-O bonds randomly distributed along the backbone of the polymers. The materials formed are completely water-soluble and behave as typical poly(zwitterions) changing charge and size with the medium pH. DLS measurements reveal that the zeta potential of the polymers can vary between +15 mV at pH 1.2 with hydrodynamic diameter (Dh) = 6.7 nm to -35 mV at pH 11.8 and Dh = 10 nm. The isoelectric point was found at pH = 2.3-2.6, where Dh of the polymer is at the minimum (2.4 nm).


Asunto(s)
Tecnología Química Verde/métodos , Lacasa/farmacología , Péptidos/síntesis química , Soluciones Farmacéuticas/química , Animales , Células CHO , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Concentración de Iones de Hidrógeno , Lacasa/química , Estructura Secundaria de Proteína , Trametes
3.
Molecules ; 17(11): 13290-306, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23138534

RESUMEN

We report herein the synthesis and characterization of 9-(2-diallylaminoethyl) adenine. We evaluated two different synthetic routes starting with adenine where the optimal route was achieved through coupling of 9-(2-chloroethyl)adenine with diallylamine. The cyclopolymerization and cyclo-copolymerization of 9-(2-diallylaminoethyl)adenine hydrochloride salt resulted in low molecular weight oligomers in low yields. In contrast, 9-(2-diallylaminoethyl)adenine failed to cyclopolymerize, however, it formed a copolymer with SO2 in relatively good yields. The molecular weights of the cyclopolymers were around 1,700-6,000 g/mol, as estimated by SEC. The cyclo-copolymer was stable up to 226 °C. To the best of our knowledge, this is the first example of a free-radical cyclo-copolymerization of a neutral alkyldiallylamine derivative with SO2. These polymers represent a novel class of carbocyclic polynucleotides.


Asunto(s)
Adenina/análogos & derivados , Polinucleótidos/síntesis química , Adenina/síntesis química , Adenina/química , Rastreo Diferencial de Calorimetría , Ciclización , Radicales Libres/química , Hidrólisis , Polimerizacion , Polinucleótidos/química , Solubilidad , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Dióxido de Azufre/química , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA