Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794108

RESUMEN

This article describes the design and construction journey of a self-developed unmanned surface vehicle (USV). In order to increase the accessibility and lower the barrier of entry we propose a low-cost (under EUR 1000) approach to the vessel construction with great adaptability and customizability. This design prioritizes minimal power consumption as a key objective. It focuses on elucidating the intricacies of both the design and assembly processes involved in creating an economical USV. Utilizing easily accessible components, the boat outlined in this study has been already participated in the 1st Aegean Ro-boat Race 2023 competition and is tailored for entry into similar robotic competitions. Its primary functionalities encompass autonomous sea navigation coupled with sophisticated collision avoidance capabilities. Finally, we studied reinforcement learning strategies for constructing a robust intelligent controller for the task of USV navigation under disturbances and we show some preliminary simulation results we have obtained.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4745-4748, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085727

RESUMEN

Multiple Sclerosis (MS) lesions detection and disease's progression monitoring at the same time, play an important role. The purpose of this research is to demonstrate a method for detecting MS plaques and volume estimation from MR Images for monitoring the progression of the disease and the brain atrophy caused. In the proposed research, a clustering-based method is utilized in order to delineate MS plaques in brain, based on anatomical information, brain geometry and lesion features. In addition to volumetric information concerning lesions and whole brain volume, volume quantification is employed to estimate MS atrophy by measuring Brain Parenchymal Fraction (BPF). In the present study, Fluid Attenuated Inversion Recovery (FLAIR) images were utilized for the detection of MS lesions and BPF evaluation, while Tl-weighted MR Images utilized in volume estimation. 30 MS patients were included in a dataset consisted of 3D FLAIR and T1-weighted MR images in order to evaluate the proposed technique. MRI scans performed in two different clinical visits, a baseline and a visit after 6 months. The results extracted in segmentation of MS lesions in terms of sensitivity is 73.80 %. The BPF at baseline estimated to 0.82 ± 0.01, and at 1stfollow up, 0.83 ± 0.01. Finally, the brain volume loss between baseline and after 6 months is 0.4%.


Asunto(s)
Esclerosis Múltiple , Atrofia , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Placa Amiloide
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1109-1112, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085783

RESUMEN

The aim of the study is to address the Multiple Sclerosis (MS) severity estimation problem based on EDSS score and the prediction of the disease's progression with the application of Machine Learning (ML) approaches. Several ML techniques are implemented. The data are provided by the Neurology Clinic of the University Hospital of Ioannina and were collected in the framework of the ProMiSi project. The features recorded are grouped into: general demographic information, MS clinical related data, results of special tests, treatment, and comorbidities. The records from 30 patients are utilized and are recorded in three time points. The ML methods provided quite high results with 94.87% accuracy for the MS severity estimation and 83.33% for the disease's progression prediction.


Asunto(s)
Esclerosis Múltiple , Instituciones de Atención Ambulatoria , Humanos , Aprendizaje Automático , Esclerosis Múltiple/diagnóstico
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3818-3821, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085898

RESUMEN

The aim of this work is to address the problem of White Matter Lesion (WML) segmentation employing Magnetic Resonance Imaging (MRI) images from Multiple Sclerosis (MS) patients through the application of deep learning. A U-net based architecture containing a contrastive path and an expanding path prior to the final pixel-wise classification is implemented. The data are provided by the Ippokratio Radiology Center of Ioannina and include Fluid-Attenuated Inversion Recovery (FLAIR) MRI images from 30 patients in three phases, baseline and two follow ups. The prediction results are quite significant in terms of pixel-wise classification. The implemented deep learning model demonstrates Dice coefficient 0.7292, Precision 75.92% and Recall 70.16% in 2D slices of FLAIR MRI non-skull stripped images.


Asunto(s)
Aprendizaje Profundo , Esclerosis Múltiple , Radiología , Sustancia Blanca , Humanos , Recuerdo Mental , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA