Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Immunol Rev ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180430

RESUMEN

Natural killer (NK) cells are innate immune effectors whose functions rely on receptors binding cytokines, recognizing self-molecules, or detecting danger signals expressed by virus-infected or tumor cells. The potent cytotoxic potential makes NK cells promising candidates for cancer immunotherapy. To enhance their activity strategies include cytokine administration, blocking of immune checkpoints, and designing of antibody-based NK cell engagers (NKCEs). NKCEs represent a cutting-edge approach to cancer therapy: they strengthen the NK-to-target cell interactions and optimize tumor killing, possibly overcoming the immunosuppressive tumor microenvironment. NK cells belong to the innate lymphoid cells (ILCs) and are categorized into different subsets also including cells with a memory-like phenotype: this complexity needs to be explored in the context of cancer immunotherapy, particularly when designing NKCEs. Two strategies to enhance NK cell activity in cancer patients can be adopted: activating patients' own NK cells versus the adoptive transfer of ex vivo activated NK cells. Furthermore, the capability of NKCEs to activate γδ T cells could have a significant synergistic effect in immunotherapy.

2.
Mucosal Immunol ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137882

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are abundant in the developing or healthy intestine to critically support tissue homeostasis in response to microbial colonization. However, intestinal ILC3s are reduced during chronic infections, colorectal cancer, or inflammatory bowel disease (IBD), and the mechanisms driving these alterations remain poorly understood. Here we employed RNA sequencing of ILC3s from IBD patients and observed a significant upregulation of RIPK3, the central regulator of necroptosis, during intestinal inflammation. This was modeled in mice where we found that intestinal ILC3s express RIPK3, with conventional (c)ILC3s exhibiting high RIPK3 and low levels of pro-survival genes relative to lymphoid tissue inducer (LTi)-like ILC3s. ILC3-specific RIPK3 is promoted by gut microbiota, further upregulated following enteric infection, and dependent upon IL-23R and STAT3 signaling. However, lineage-specific deletion of RIPK3 revealed a redundant role in ILC3 survival, due to a blockade of RIPK3-mediated necroptosis by caspase 8, which was also activated in response to enteric infection. In contrast, lineage-specific deletion of caspase 8 resulted in loss of cILC3s from the healthy intestine and all ILC3 subsets during enteric infection, which increased pathogen burdens and gut inflammation. This function of caspase 8 required catalytic activity induced by TNF or TL1A and was dispensable if RIPK3 was simultaneously deleted. Caspase 8 activation and cell death were associated with increased Fas on ILC3s, and the Fas-FasL pathway was upregulated by cILC3s during enteric infection, which could restrain the abundance of intestinal ILC3s. Collectively, these data reveal that interpretation of key cytokine signals controls ILC3 survival following microbial challenge, and that an imbalance of these pathways, such as in IBD or across ILC3 subsets, provokes depletion of tissue-protective ILC3s from the inflamed intestine.

3.
Nat Immunol ; 25(8): 1474-1488, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38956378

RESUMEN

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.


Asunto(s)
Células Asesinas Naturales , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Células Asesinas Naturales/inmunología , Transcriptoma , Neoplasias/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Tonsila Palatina/inmunología , Tonsila Palatina/citología , Perfilación de la Expresión Génica , Pulmón/inmunología , Citocinas/metabolismo
4.
Nature ; 630(8018): 976-983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867048

RESUMEN

Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.


Asunto(s)
Inmunidad Innata , Inflamación , Interleucina-23 , Linfocitos , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno CTLA-4/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Microbioma Gastrointestinal , Inflamación/inmunología , Inflamación/patología , Inflamación/metabolismo , Interleucina-23/inmunología , Intestinos/inmunología , Intestinos/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Análisis de Expresión Génica de una Sola Célula , Factor de Transcripción STAT3/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
5.
Immunity ; 57(6): 1360-1377.e13, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821052

RESUMEN

Limited infiltration and activity of natural killer (NK) and T cells within the tumor microenvironment (TME) correlate with poor immunotherapy responses. Here, we examined the role of the endonuclease Regnase-1 on NK cell anti-tumor activity. NK cell-specific deletion of Regnase-1 (Reg1ΔNK) augmented cytolytic activity and interferon-gamma (IFN-γ) production in vitro and increased intra-tumoral accumulation of Reg1ΔNK-NK cells in vivo, reducing tumor growth dependent on IFN-γ. Transcriptional changes in Reg1ΔNK-NK cells included elevated IFN-γ expression, cytolytic effectors, and the chemokine receptor CXCR6. IFN-γ induced expression of the CXCR6 ligand CXCL16 on myeloid cells, promoting further recruitment of Reg1ΔNK-NK cells. Mechanistically, Regnase-1 deletion increased its targets, the transcriptional regulators OCT2 and IκBζ, following interleukin (IL)-12 and IL-18 stimulation, and the resulting OCT2-IκBζ-NF-κB complex induced Ifng transcription. Silencing Regnase-1 in human NK cells increased the expression of IFNG and POU2F2. Our findings highlight NK cell dysfunction in the TME and propose that targeting Regnase-1 could augment active NK cell persistence for cancer immunotherapy.


Asunto(s)
Interferón gamma , Células Asesinas Naturales , Microambiente Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Interferón gamma/metabolismo , Humanos , Ratones , Microambiente Tumoral/inmunología , Ratones Endogámicos C57BL , Ribonucleasas/metabolismo , Ribonucleasas/genética , Ratones Noqueados , Transcripción Genética , Línea Celular Tumoral , FN-kappa B/metabolismo
7.
Nature ; 626(8000): 727-736, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383621

RESUMEN

Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Neoplasias/inmunología , Neoplasias/terapia , Inmunidad Innata
8.
Immunity ; 57(1): 6-8, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198854

RESUMEN

Conventional natural killer (cNK) cells patrol the organism via circulation and invade tissues in response to infection or inflammation. In this issue of Immunity, Torcellan et al. report that circulating cNK cells are recruited into infected skin and differentiate into long-lived tissue-resident NK cells capable of mediating an accelerated response upon reinfection.


Asunto(s)
Inflamación , Células Asesinas Naturales , Humanos , Piel
9.
Nat Rev Immunol ; 24(7): 471-486, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38273127

RESUMEN

There have been major advances in the immunotherapy of cancer in recent years, including the development of T cell engagers - antibodies engineered to redirect T cells to recognize and kill cancer cells - for the treatment of haematological malignancies. However, the field still faces several challenges to develop agents that are consistently effective in a majority of patients and cancer types, such as optimizing drug dose, overcoming treatment resistance and improving efficacy in solid tumours. A new generation of T cell-targeted molecules was developed to tackle these issues that are potentially more effective and safer. In addition, agents designed to engage the antitumour activities of other immune cells, including natural killer cells and myeloid cells, are showing promise and have the potential to treat a broader range of cancers.


Asunto(s)
Inmunoterapia , Células Asesinas Naturales , Neoplasias , Linfocitos T , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Animales , Células Mieloides/inmunología
11.
Cell Mol Immunol ; 20(9): 1040-1050, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37419983

RESUMEN

B cells play essential roles in immunity, mainly through the production of high affinity plasma cells (PCs) and memory B (Bmem) cells. The affinity maturation and differentiation of B cells rely on the integration of B-cell receptor (BCR) intrinsic and extrinsic signals provided by antigen binding and the microenvironment, respectively. In recent years, tumor infiltrating B (TIL-B) cells and PCs (TIL-PCs) have been revealed as important players in antitumor responses in human cancers, but their interplay and dynamics remain largely unknown. In lymphoid organs, B-cell responses involve both germinal center (GC)-dependent and GC-independent pathways for Bmem cell and PC production. Affinity maturation of BCR repertoires occurs in GC reactions with specific spatiotemporal dynamics of signal integration by B cells. In general, the reactivation of high-affinity Bmem cells by antigens triggers GC-independent production of large numbers of PC without BCR rediversification. Understanding B-cell dynamics in immune responses requires the integration of multiple tools and readouts such as single-cell phenotyping and RNA-seq, in situ analyses, BCR repertoire analysis, BCR specificity and affinity assays, and functional tests. Here, we review how those tools have recently been applied to study TIL-B cells and TIL-PC in different types of solid tumors. We assessed the published evidence for different models of TIL-B-cell dynamics involving GC-dependent or GC-independent local responses and the resulting production of antigen-specific PCs. Altogether, we highlight the need for more integrative B-cell immunology studies to rationally investigate TIL-B cells as a leverage for antitumor therapies.


Asunto(s)
Subgrupos de Linfocitos B , Neoplasias , Humanos , Centro Germinal , Linfocitos B , Receptores de Antígenos de Linfocitos B , Inmunidad Adaptativa , Antígenos , Microambiente Tumoral
12.
Life Sci Alliance ; 6(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37105715

RESUMEN

MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.


Asunto(s)
Interleucina-15 , Células Asesinas Naturales , Animales , Humanos , Ratones , Citocinas/metabolismo , Regulación de la Expresión Génica , Interleucina-15/genética , Interleucina-15/metabolismo , Transducción de Señal
14.
Cancer Cell ; 41(2): 232-234, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36787695

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC)-derived liver metastasis represents a major unmet medical need. Liu et al. show that circulating tumor cells (CTCs) from the hepatic portal vein (HPV), and not from primary or metastatic sites, are protected from natural killer (NK) cells through the NKG2A/HLA-E axis. Interfering with this pathway unleashes NK cells and prevents PDAC metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Células Asesinas Naturales , Neoplasias Hepáticas , Subfamília C de Receptores Similares a Lectina de Células NK , Humanos , Carcinoma Ductal Pancreático/patología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias Hepáticas/secundario , Antígenos HLA-E
15.
Semin Immunol ; 66: 101709, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621291

RESUMEN

Innate lymphoid cells (ILCs) are a group of innate lymphocytes that do not express RAG-dependent rearranged antigen-specific cell surface receptors. ILCs are classified into five groups according to their developmental trajectory and cytokine production profile. They encompass NK cells, which are cytotoxic, helper-like ILCs 1-3, which functionally mirror CD4+ T helper (Th) type 1, Th2 and Th17 cells respectively, and lymphoid tissue inducer (LTi) cells. NK cell development depends on Eomes (eomesodermin), whereas the ILC1 program is regulated principally by the transcription factor T-bet (T-box transcription factor Tbx21), that of ILC2 is regulated by GATA3 (GATA-binding protein 3) and that of ILC3 is regulated by RORγt (RAR-related orphan receptor γ). NK cells were discovered close to fifty years ago, but ILC1s were first described only about fifteen years ago. Within the ILC family, NK and ILC1s share many similarities, as witnessed by their cell surface phenotype which largely overlap. NK cells and ILC1s have been reported to respond to tissue inflammation and intracellular pathogens. Several studies have reported an antitumorigenic role for NK cells in both humans and mice, but data for ILC1s are both scarce and contradictory. In this review, we will first describe the different NK cell and ILC1 subsets, their effector functions and development. We will then discuss their role in cancer and the effects of the tumor microenvironment on their metabolism.


Asunto(s)
Inmunidad Innata , Células Asesinas Naturales , Linfocitos , Neoplasias , Animales , Humanos , Ratones , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Neoplasias/inmunología , Linfocitos T Colaboradores-Inductores , Microambiente Tumoral
16.
Nat Biotechnol ; 41(9): 1296-1306, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36635380

RESUMEN

CD123, the alpha chain of the IL-3 receptor, is an attractive target for acute myeloid leukemia (AML) treatment. However, cytotoxic antibodies or T cell engagers targeting CD123 had insufficient efficacy or safety in clinical trials. We show that expression of CD64, the high-affinity receptor for human IgG, on AML blasts confers resistance to anti-CD123 antibody-dependent cell cytotoxicity (ADCC) in vitro. We engineer a trifunctional natural killer cell engager (NKCE) that targets CD123 on AML blasts and NKp46 and CD16a on NK cells (CD123-NKCE). CD123-NKCE has potent antitumor activity against primary AML blasts regardless of CD64 expression and induces NK cell activation and cytokine secretion only in the presence of AML cells. Its antitumor activity in a mouse CD123+ tumor model exceeds that of the benchmark ADCC-enhanced antibody. In nonhuman primates, it had prolonged pharmacodynamic effects, depleting CD123+ cells for more than 10 days with no signs of toxicity and very low inflammatory cytokine induction over a large dose range. These results support clinical development of CD123-NKCE.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células Asesinas Naturales , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos T , Citocinas/metabolismo , Subunidad alfa del Receptor de Interleucina-3
17.
iScience ; 26(12): 108570, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38162021

RESUMEN

The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency of IRE1 and its downstream transcription factor XBP1 in NKp46+ NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1-sufficient Ly49H+ NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that IRE1/XBP1 activation is required during vigorous NK cell proliferation early upon viral infection, as part of a canonical UPR response.

18.
Cell Rep Med ; 3(11): 100812, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384102

RESUMEN

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are populations of non-T, non-B lymphocytes in peripheral tissues. Although NK and ILC1 subsets have been described, their identification and characteristics remain unclear. We performed single-cell RNA sequencing and CITE-seq to explore NK and ILC1 heterogeneity between tissues. We observed that although NK1 and NK2 subsets are conserved in spleen and liver, ILC1s are heterogeneous across tissues. We identified sets of genes expressed by related subsets or characterizing unique ILC1 populations in each organ. The syndecan-4 appeared as a marker discriminating murine ILC1 from NK cells across organs. Finally, we revealed that the expressions of EOMES, GZMA, IRF8, JAK1, NKG7, PLEK, PRF1, and ZEB2 define NK cells and that IL7R, LTB, and RGS1 differentiate ILC1s from NK cells in mice and humans. Our data constitute an important resource to improve our understanding of NK-ILC1 origin, phenotype, and biology.


Asunto(s)
Inmunidad Innata , Células Asesinas Naturales , Animales , Humanos , Ratones , Inmunidad Innata/genética , Células Asesinas Naturales/metabolismo
19.
Cell Rep Med ; 3(10): 100783, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36260981

RESUMEN

Harnessing innate immunity is emerging as a promising therapeutic approach in cancer. We report here the design of tetraspecific molecules engaging natural killer (NK) cell-activating receptors NKp46 and CD16a, the ß-chain of the interleukin-2 receptor (IL-2R), and a tumor-associated antigen (TAA). In vitro, these tetraspecific antibody-based natural killer cell engager therapeutics (ANKETs) induce a preferential activation and proliferation of NK cells, and the binding to the targeted TAA triggers NK cell cytotoxicity and cytokine and chemokine production. In vivo, tetraspecific ANKETs induce NK cell proliferation and their accumulation at the tumor bed, as well as the control of local and disseminated tumors. Treatment of non-human primates with CD20-directed tetraspecific ANKET leads to CD20+ circulating B cell depletion, with minimal systemic cytokine release and no sign of toxicity. Tetraspecific ANKETs, thus, constitute a technological platform for harnessing NK cells as next-generation cancer immunotherapies.


Asunto(s)
Interleucina-2 , Neoplasias , Animales , Interleucina-2/genética , Células Asesinas Naturales , Receptores de Interleucina-2/metabolismo , Citocinas , Neoplasias/genética , Quimiocinas/metabolismo
20.
Crit Care Med ; 50(12): 1788-1798, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218354

RESUMEN

OBJECTIVES: Severe COVID-19 is associated with exaggerated complement activation. We assessed the efficacy and safety of avdoralimab (an anti-C5aR1 mAb) in severe COVID-19. DESIGN: FOR COVID Elimination (FORCE) was a double-blind, placebo-controlled study. SETTING: Twelve clinical sites in France (ICU and general hospitals). PATIENTS: Patients receiving greater than or equal to 5 L oxygen/min to maintain Sp o2 greater than 93% (World Health Organization scale ≥ 5). Patients received conventional oxygen therapy or high-flow oxygen (HFO)/noninvasive ventilation (NIV) in cohort 1; HFO, NIV, or invasive mechanical ventilation (IMV) in cohort 2; and IMV in cohort 3. INTERVENTIONS: Patients were randomly assigned, in a 1:1 ratio, to receive avdoralimab or placebo. The primary outcome was clinical status on the World Health Organization ordinal scale at days 14 and 28 for cohorts 1 and 3, and the number of ventilator-free days at day 28 (VFD28) for cohort 2. MEASUREMENTS AND MAIN RESULTS: We randomized 207 patients: 99 in cohort 1, 49 in cohort 2, and 59 in cohort 3. During hospitalization, 95% of patients received glucocorticoids. Avdoralimab did not improve World Health Organization clinical scale score on days 14 and 28 (between-group difference on day 28 of -0.26 (95% CI, -1.2 to 0.7; p = 0.7) in cohort 1 and -0.28 (95% CI, -1.8 to 1.2; p = 0.6) in cohort 3). Avdoralimab did not improve VFD28 in cohort 2 (between-group difference of -6.3 (95% CI, -13.2 to 0.7; p = 0.96) or secondary outcomes in any cohort. No subgroup of interest was identified. CONCLUSIONS: In this randomized trial in hospitalized patients with severe COVID-19 pneumonia, avdoralimab did not significantly improve clinical status at days 14 and 28 (funded by Innate Pharma, ClinicalTrials.gov number, NCT04371367).


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales Humanizados/uso terapéutico , Oxígeno , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA