RESUMEN
Viral infection disrupts the normal regulation of the host gene's expression. In order to normalise the expression of dysregulated host genes upon virus infection, analysis of stable reference housekeeping genes using quantitative real-time-PCR (qRT-PCR) is necessary. In the present study, healthy and African swine fever virus (ASFV) infected porcine tissues were assessed for the expression stability of five widely used housekeeping genes (HPRT1, B2M, 18 S rRNA, PGK1 and H3F3A) as reference genes using standard algorithm. Total RNA from each tissue sample (lymph node, spleen, kidney, heart and liver) from healthy and ASFV-infected pigs was extracted and subsequently cDNA was synthesized, and subjected to qRT-PCR. Stability analysis of reference genes expression was performed using the Comparative delta CT, geNorm, BestKeeper and NormFinder algorithm available at RefFinder for the different groups. Direct Cycle threshold (CT) values of samples were used as an input for the web-based tool RefFinder. HPRT1 in spleen, 18 S rRNA in liver and kidney and H3F3A in heart and lymph nodes were found to be stable in the individual healthy tissue group (group A). The majority of the ASFV-infected organs (liver, kidney, heart, lymph node) exhibited H3F3A as stable reference gene with the exception of the ASFV-infected spleen, where HPRT1 was found to be the stable gene (group B). HPRT1 was found to be stable in all combinations of all CT values of both healthy and ASFV-infected porcine tissues (group C). Of five different reference genes investigated for their stability in qPCR analysis, the present study revealed that the 18 S rRNA, H3F3A and HPRT1 genes were optimal reference genes in healthy and ASFV-infected different porcine tissue samples. The study revealed the stable reference genes found in healthy as well as ASF-infected pigs and these reference genes identified through this study will form the baseline data which will be very useful in future investigations on gene expression in ASFV-infected pigs.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Animales , Fiebre Porcina Africana/virología , Porcinos , Virus de la Fiebre Porcina Africana/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Perfilación de la Expresión Génica , Genes Esenciales/genéticaRESUMEN
Porcine reproductive and respiratory syndrome (PRRS) and African swine fever (ASF) are economically important diseases of pigs throughout the world. During an outbreak, all age groups of animals except piglets < 1 month of age were affected with symptoms of high fever, cutaneous hemorrhages, vomition with blood, diarrhea, poor appetite, ataxia, and death. The outbreak was confirmed by the detection of the N gene of the porcine reproductive and respiratory syndrome virus (PRRSV) and the VP72 gene of the African swine fever virus (ASFV) by PCR in representative blood samples from affected pigs followed by Sanger sequencing. Mixed infection was also confirmed by simultaneous detection of both the viruses using multiplex PCR. Phylogenetic analysis of both the viruses revealed that the outbreak was related to ASFV and PRRSV strains from China which were also closely related to the PRRSV and ASFV strains from the recent outbreak from India. The study confirmed the involvement of genotype II of ASFV and genotype 2 of PRRSV in the present outbreak. Interestingly, PRRSV associated with the present outbreak was characterized as a highly pathogenic PRRSV. Therefore, the present study indicates the possibility of future waves or further outbreaks of these diseases (PRRS and ASF) in this region. This is the first report of ASFV and PRRSV co-infection in pigs from India.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Coinfección , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus de la Fiebre Porcina Africana/genética , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Fiebre Porcina Africana/epidemiología , Coinfección/epidemiología , Coinfección/veterinaria , FilogeniaRESUMEN
Background: Estimating and analyzing trends and patterns of health loss are essential to promote efficient resource allocation and improve Peru's healthcare system performance. Methods: Using estimates from the Global Burden of Disease (GBD), Injuries, and Risk Factors Study (2019), we assessed mortality and disability in Peru from 1990 to 2019. We report demographic and epidemiologic trends in terms of population, life expectancy at birth (LE), mortality, incidence, prevalence, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by the major diseases and risk factors in Peru. Finally, we compared Peru with 16 countries in the Latin American (LA) region. Results: The Peruvian population reached 33.9 million inhabitants (49.9% women) in 2019. From 1990 to 2019, LE at birth increased from 69.2 (95% uncertainty interval 67.8-70.3) to 80.3 (77.2-83.2) years. This increase was driven by the decline in under-5 mortality (-80.7%) and mortality from infectious diseases in older age groups (+60 years old). The number of DALYs in 1990 was 9.2 million (8.5-10.1) and reached 7.5 million (6.1-9.0) in 2019. The proportion of DALYs due to non-communicable diseases (NCDs) increased from 38.2% in 1990 to 67.9% in 2019. The all-ages and age-standardized DALYs rates and YLLs rates decreased, but YLDs rates remained constant. In 2019, the leading causes of DALYs were neonatal disorders, lower respiratory infections (LRIs), ischemic heart disease, road injuries, and low back pain. The leading risk factors associated with DALYs in 2019 were undernutrition, high body mass index, high fasting plasma glucose, and air pollution. Before the COVID-19 pandemic, Peru experienced one of the highest LRIs-DALYs rates in the LA region. Conclusion: In the last three decades, Peru experienced significant improvements in LE and child survival and an increase in the burden of NCDs and associated disability. The Peruvian healthcare system must be redesigned to respond to this epidemiological transition. The new design should aim to reduce premature deaths and maintain healthy longevity, focusing on effective coverage and treatment of NCDs and reducing and managing the related disability.
Asunto(s)
COVID-19 , Enfermedades no Transmisibles , Infecciones del Sistema Respiratorio , Anciano , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , COVID-19/epidemiología , Esperanza de Vida , Pandemias , Perú/epidemiología , Años de Vida Ajustados por Calidad de Vida , Lactante , PreescolarRESUMEN
Autophagy is a lysosomal degradation pathway that is constitutively active in almost every cell of our body at basal level. This self-eating process primarily serves to remove superfluous constituents of the cells and recycle the degraded products. Autophagy plays an essential role in cell homeostasis and can be enhanced in response to stressful conditions. Impairment in the regulation of the autophagic pathway is implicated in pathological conditions such as neurodegeneration, cardiac disorders, and cancer. However, the role of autophagy in cancer initiation and development is controversial and context-dependent. Evidence from various studies has shown that autophagy serves dual purpose and may assist in cancer progression or suppression. In the early stages of cancer initiation, autophagy acts as a quality control mechanism and prevents cancer development. When cancer is established and progresses to a later stage, autophagy helps in the survival of these cells through adaptation to stresses, including exposure to anti-cancer drugs. In this review, we highlight various studies on autophagic pathways and describe the role of autophagy in cancer, specifically acute myeloid leukemia (AML). We also discuss the prognostic significance of autophagy genes involved in AML leukemogenesis and implications in conferring resistance to chemotherapy.
Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Autofagia , Humanos , Leucemia Mieloide Aguda/genéticaRESUMEN
The global epidemic caused by novel coronavirus continues to be a crisis in the world and a matter of concern. The way the epidemic has wreaked havoc on the international level has become difficult for the healthcare systems to supply adequately personal protection equipment for medical personnel all over the globe. In this paper, considering the COVID-19 outbreak, a multi-objective, multi-product, and multi-period model for the personal protection equipment demands satisfaction aiming to optimize total cost and shortage, simultaneously, is developed. The model is embedded with instances and validated by both modern and classic multi-objective metaheuristic algorithms. Moreover, the Taguchi method is exploited to set the metaheuristic into their best performances by finding their parameters' optimum level. Furthermore, fifteen test examples are designed to prove the established PPE supply chain model and tuned algorithms' applicability. Among the test examples, one is related to a real case study in Iran. Finally, metaheuristics are evaluated by a series of related metrics through different statistical analyses. It can be concluded from the obtained results that solution methods are practical and valuable to achieve the efficient shortage level and cost.
RESUMEN
Abstract The purpose of the study was to develop a xenogenic bubaline diaphragm matrix (BDM) for abdominal hernia repair. A fresh diaphragm was decellularized using aqueous sodium dodecyl sulfate (SDS) solutions (0.5-4% w/v) over a period. Acellularity was confirmed histologically and characterized by Masson's trichrome staining, scanning electron microscopy (SEM), DNA quantification, agarose gel electrophoresis, and Fourier-transform infrared spectroscopy. The BDM was used for clinical abdominal hernia repair in six cattle. Clinical, hemato-biochemical and antioxidant parameters were evaluated to assess biocompatibility of xenogenic BDM. Histologically, the diaphragm treated with 2% SDS for 48 h showed complete acellularity and orderly arranged collagen fibers. The SEM confirmed preservation of collagen structure and integrity. The DNA content was significantly (P < 0.05) reduced in BDM (33.12 ± 5.40 ng/mg) as compared to the native diaphragm (443.96 ± 162.60 ng/mg). DNA extracts from BDM show considerable removal of DNA material, with absence of DNA band in agarose gel. The FTIR spectrum of BDM has shown all characteristic transmittance peaks of bovine skin collagen indicating preserved collagen structure. Six cattle with BDM implant recovered uneventfully and remained sound at least upto 6 months. Hemato-biochemical and antioxidant findings were unremarkable. Bubaline diaphragm matrix shows excellent repair efficiency and biocompatibility for abdominal hernia repair in cattle without complications.
Asunto(s)
Búfalos , Diafragma/anomalías , Hernia Abdominal/fisiopatología , Análisis Espectral/instrumentación , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo/instrumentaciónRESUMEN
Background: Internal anatomy of maxillary first premolars is particularly multifaceted on account of the variation in number of roots and canal configuration. Maxillary first premolars with 3 roots are called as small molar or "radiculous" because of their similar anatomy to the maxillary first molars. The most demanding step in endodontic treatment is identification and proper access to pulp canals of certain teeth with atypical canal configurations. Methods of identification of such premolars can be by various aides. Case Presentation: The present case describes the application of Cone Beam-Computed Tomography in the diagnosis of extra root with extra canal in a three rooted maxillary right first premolar. Conclusions: Proper knowledge of the anatomical variations is a must for an endodontist to make a treatment successful. Utilizing the latest technology along with the traditional concepts can surely rule out the inaccuracy in the treatment involved in such cases.
RESUMEN
AIM: To analyse the root canal morphology of mandibular third molars using clearing technique. MATERIAL AND METHODS: Ninety permanent extracted mandibular third molar teeth were collected based on inclusion and exclusion criteria. Teeth were then decalcified and were made transparent Methylene Blue Dye was injected to color the pulp space. These teeth were then observed under sterio Microscope and root canal systems were identified according to Vertucci's Classification. RESULTS: The most common anatomical morphology found was having two roots. Overall type I Vertucci's configuration was the most common pattern of canals. Other canal patterns that were found included type II, III, IV and V. In this study no canal of type VI, VII or VIII were found. CONCLUSION: The morphological variations in root patterns and canal configuration of mandibular third molar should be given consideration for successful endodontic treatment.