Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 87(3): 594-602, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16602289

RESUMEN

We used strontium isotopes and analysis of foliar and soil nutrients to test whether erosion can rejuvenate the supply of rock-derived nutrients in the lowland tropical rain forest of La Selva, Costa Rica. We expected that these nutrients would be depleted from soils on stable surfaces, a result of over one million years of weathering in situ. In fact, trees and palms in all landscape positions derive a relatively high percentage (> or =40%) of their strontium from bedrock, rather than atmospheric, sources. The fraction that is rock-derived increases on slopes, but with no detectable effect on plant macronutrient concentrations. These results differ from those in a similar ecosystem on Kauai, Hawaii, where plants on uneroded surfaces derive almost all of their foliar Sr from atmospheric, rather than bedrock, sources. The results from La Selva challenge the assumption that tropical Oxisols in general have low nutrient inputs from bedrock, and support the hypothesis that erosion can increase the supply of these nutrients in lower landscape positions.


Asunto(s)
Plantas/metabolismo , Suelo/análisis , Árboles/metabolismo , Clima Tropical , Costa Rica , Sedimentos Geológicos/análisis , Fenómenos Geológicos , Geología , Desarrollo de la Planta , Isótopos de Estroncio , Árboles/crecimiento & desarrollo
2.
Oecologia ; 88(3): 362-366, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28313797

RESUMEN

Emissions of nitrous oxide and soil nitrogen pools and transformations were measured over an annual cycle in two forests and one pasture in tropical deciduous forest near Chamela, México. Nitrous oxide flux was moderately high (0.5-2.5 ng cm-2 h-1) during the wet season and low (<0.3 ng cm-2 h-1) during the dry season. Annual emissions of nitrogen as nitrous oxide were calculated to be 0.5-0.7 kg ha-1 y-1, with no substantial difference between the forests and pasture. Wetting of dry soil caused a large but short-lived pulse of N2O flux that accounted for <2% of annual flux. Variation in soil water through the season was the primary controlling factor for pool sizes of ammonium and nitrate, nitrogen transformations, and N2O flux.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA