Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 278: 107470, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852497

RESUMEN

Chlorine 36 (36Cl) is a radionuclide of natural and anthropogenic origin, mainly used as a tracer in geochemical studies. Owing to analytical constraints and its low environmental levels, knowledge of 36Cl behavior in the environment is still very limited. In this study, we use environmental measurements to report for the first time the wet deposition fluxes of 36Cl downwind an anthropogenic source, the Orano nuclear reprocessing plant, which chronically emits 36Cl into the environment. Measurements of 36Cl in rainwater samples at our study site were 1-2 orders of magnitude above the environmental background. The isotope ratios 36Cl/Cl of the samples and the 36Cl content in the rainwater averaged 2.3x10-12 at at-1 and 1.7x108 at l-1 respectively. A decrease in these levels was observed 20 km away from the study site, outside the plant's gas plume, indicating that the marking of 36Cl on the study site is related to the plant discharges. Over the sampling period, wet deposition fluxes at the study site averaged 3.4x103 at m-2s-1, with significant values measured when precipitations scavenge the plant's gas plume down onto our study site. Analysis of these fluxes also revealed the presence of a significant rainout phenomenon in the study area. These results provide new data on the wet deposition flux of 36Cl and will thus enable better assessment of impact studies in a context of decommissioning or accidents involving nuclear power plants.


Asunto(s)
Cloro , Monitoreo de Radiación , Francia , Cloro/análisis , Contaminantes Radiactivos del Agua/análisis , Lluvia/química , Radioisótopos/análisis , Plantas de Energía Nuclear
2.
J Environ Radioact ; 268-269: 107264, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572511

RESUMEN

Once released into the atmosphere, radionuclide dry deposition represents a major transfer process. It can be accurately characterized by its deposition velocity. However, this parameter is poorly constrained for most radionuclides, including chlorine 36. Chlorine 36 is a radionuclide of cosmogenic and anthropogenic origin. It may be discharged into the environment as gases and/or particles during the decommissioning of nuclear plants and the recycling of nuclear fuels. In this study, chlorine 36 deposition velocities are, for the first time, experimentally determined on grass downwind from the Orano La-Hague plant. The atmospheric chlorine 36 measurements were on average 50 nBq.m-3 for the gaseous fraction and 19 nBq.m3 for the particulate fraction. To measure the chlorine 36 transferred from the atmosphere to the grass, a method was devised for extracting the chlorides contained in solid matrices. With this method, chlorides were extracted with a mean efficiency of 83%. Chlorine 36 concentrations in the grass were on average 4 µBq.g-1, suggesting fast uptake of atmospheric chlorine 36. The yielded 36Cl dry deposition velocities varied with the season and were between 1 × 10-3 and 6 × 10-3 m s-1. The chlorine 36 depositions were modelled by adapting the existing deposition models and based on meteorological and micro-meteorological data. The dry deposition velocities calculated by the model showed less than one order of magnitude of difference with those determined experimentally. The deposition fluxes calculated by the model showed that the atmospheric depositions were predominantly gaseous chlorine 36 (>97%). However, on remote sites, the particulate fraction could be larger and have a greater influence on dry deposition. As chlorine 36 is a highly soluble and bioavailable element, these results will enable a better study of its behaviour in the environment and a more accurate evaluation of its dosimetric impact.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo de Radiación , Monitoreo del Ambiente , Cloro , Pradera , Cloruros , Gases , Radioisótopos , Poaceae , Plantas , Contaminantes Atmosféricos/análisis
3.
Environ Pollut ; 184: 613-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24051031

RESUMEN

Three types of labeled silica nanoparticles were used in transport experiments in saturated sand. The goal of this study was to evaluate both the efficiency of labeling techniques (fluorescence (FITC), metal (Ag(0) core) and radioactivity ((110m)Ag(0) core)) in realistic transport conditions and the reactive transport of silica nanocolloids of variable size and concentration in porous media. Experimental results obtained under contrasted experimental conditions revealed that deposition in sand is controlled by nanoparticles size and ionic strength of the solution. A mathematical model is proposed to quantitatively describe colloid transport. Fluorescent labeling is widely used to study fate of colloids in soils but was the less sensitive one. Ag(0) labeling with ICP-MS detection was found to be very sensitive to measure deposition profiles. Radiolabeled ((110m)Ag(0)) nanoparticles permitted in situ detection. Results obtained with radiolabeled nanoparticles are wholly original and might be used for improving the modeling of deposition and release dynamics.


Asunto(s)
Modelos Químicos , Nanopartículas/análisis , Dióxido de Silicio/análisis , Contaminantes Químicos del Agua/análisis , Coloides/análisis , Coloides/química , Fluorescencia , Modelos Teóricos , Nanopartículas/química , Concentración Osmolar , Porosidad , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química
4.
Environ Pollut ; 184: 605-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23948261

RESUMEN

The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core ((110m)Ag) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled ((110m)Ag) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment.


Asunto(s)
Nanopartículas/análisis , Dióxido de Silicio/análisis , Contaminantes Químicos del Agua/análisis , Coloides/química , Monitoreo del Ambiente/métodos , Nanopartículas/química , Porosidad , Dióxido de Silicio/química , Propiedades de Superficie , Contaminantes Químicos del Agua/química
5.
Environ Sci Process Impacts ; 15(8): 1590-600, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812006

RESUMEN

This study investigates the size and concentration effects on the transport of silica colloids in columns of sandy aquifer material. Colloid transport experiments were performed with specifically developed fluorescent labeled silica colloids in columns of a repacked natural porous medium under hydro-geochemical conditions representative of sandy aquifers. Breakthrough curves and vertical deposition profiles of colloids were measured for various colloid concentrations and sizes. The results showed that for a given colloid concentration injected, deposition increased when increasing the size of the colloids. For a given colloid size, retention was also shown to be highly concentration-dependent with a non-monotonous pattern presenting low and high concentration specificities. Deposition increases when increasing both size and injected concentration, until a threshold concentration is reached, above which retention decreases, thus increasing colloid mobility. Results observed above the threshold concentration agree with a classical blocking mechanism typical of a high concentration regime. Results observed at lower colloid concentrations were not modeled with a classical blocking model and a depth- and time-dependent model with a second order kinetic law was necessary to correctly fit the experimental data in the entire range of colloid concentrations with a single set of parameters for each colloidal size. The colloid deposition mechanisms occuring at low concentrations were investigated through a pore structure analysis carried out with Mercury Intrusion Porosimetry and image analysis. The determined pore size distribution permitted estimation of the maximal retention capacity of the natural sand as well as some low flow zones. Altogether, these results stress the key role of the pore space geometry of the sand in controlling silica colloids deposition under hydro-geochemical conditions typical of sandy aquifers. Our results also showed originally that colloid mobility in porous media is not only favored at high colloid concentrations, but also at very low concentrations, which are more likely to be observed in groundwater.


Asunto(s)
Coloides/química , Agua Subterránea/química , Modelos Teóricos , Nanopartículas/química , Dióxido de Silicio/química , Movimientos del Agua , Fluorescencia , Colorantes Fluorescentes/química , Porosidad , Rodaminas/química
6.
Environ Sci Process Impacts ; 15(2): 347-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25208699

RESUMEN

The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 µm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 µm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic processes, evolving from a matrix-dominant transfer of water and bacteria to a macropore-dominant transfer. This work points out the importance of using undisturbed natural soils to evaluate the mobility of bacteria in the field, since the evolving hydrodynamic properties of soils appeared to dominate most physicochemical factors.


Asunto(s)
Escherichia coli/fisiología , Microbiología del Suelo , Francia , Modelos Teóricos , Porosidad , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA