Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121746, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986375

RESUMEN

Mismanagement of the nitrogen (N) fertilization in agriculture leads to low N use efficiency (NUE) and therefore pollution of waters and atmosphere due to NO3- leaching, and N2O and NH3 emissions. The use of N simulation models of the soil-plant system can help improve the N fertilizer management increasing NUE and decreasing N pollution issues. However, many N simulation models lack balance between complexity and uncertainty with the result that they are not applied in actual practice. The NITIRSOIL is a one-dimensional transient-state model with a monthly time step that aims at addressing this lack in the estimation of, mainly, dry matter yield (DMY), crop N uptake (Nupt), soil mineral N (Nmin), and NO3- leaching in agricultural fields. According to its global sensitivity analysis for horticulture, the NITIRSOIL simulations of the aforementioned outputs mostly depend on the critical N dilution curve, harvest index, dry matter fraction, potential fresh yield and nitrification coefficients. According to its validation for 35 nitrogen fertilization trials with 11 vegetables under semi-arid Mediterranean climate in Eastern Spain, the NITIRSOIL presents indices of agreement between 0.87 and 0.97 for the prediction of total dry matter, DMY, Nupt, NO3- leaching and soil Nmin at crop season end. Therefore, the NITIRSOIL model can be used in actual practice to improve the sustainability of the N management in, particularly horticulture, due to the balance it features between complexity and prediction uncertainty. For this aim, the NITRISOIL can be used either on its own, or in combination with "Nmin" on-site N fertilization recommendation methods, or even could be implemented as the calculation core of decision support systems.


Asunto(s)
Agricultura , Fertilizantes , Nitrógeno , Suelo , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Agricultura/métodos , Incertidumbre , Suelo/química , Modelos Teóricos
3.
Front Plant Sci ; 13: 866053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734259

RESUMEN

The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young 'Tempranillo' (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m-1 and a Saline treatment with 3.5 dS m-1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl- and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.

4.
Plants (Basel) ; 11(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35161337

RESUMEN

Vineyard calcareous soils are usually low in organic matter, which makes them prone to physical, chemical, and biological degradation. Besides, these soils are also usually poor in various nutrients in plant-available form, e.g., iron. To make up for this lack of soil fertility, on the one hand, manures, and on the other, iron chelates are usually used. However, the soil application of these materials is not free from problems, and other amendments based on leonardites could be advantageously used as an alternative. Therefore, two organic amendments, one leonardite alone (1 Mg/ha), and the other leonardite (1 Mg/ha) plus ferrous sulphate heptahydrate (0.5 Mg/ha), were tested for three years in a commercial vineyard calcareous plot under Mediterranean climate. The effects of these amendments on soil fertility, plant nutrient contents, and berry quality were studied against a control of bare soil by means of a fully randomized trial with three repetitions per treatment. Soil organic matter (SOM) increased as a consequence of both leonardite treatments, but much more than expected on the basis of a simple mass transfer from the amendments. With the ferrous-sulphate-heptahydrate-supplemented leonardite, the increase in SOM was noticeably higher. This is explained on the basis of nutrient quantity and intensity-pH-related effects, which increased soil nutrient plant-availability and presumably enhanced vine root growth. In response to the higher plant availability of nutrients, the petiole nutrient concentrations were observed to increase under the leonardite treatments. However, only a trend to increase potassium in petioles and in grape must, linked to a decrease of grape must pH, was observed in harvest quality under the leonardite treatments. Leonardite and adequately supplemented leonardite seem to have potential for increasing SOM contents and nutrient plant-availability, thus improving the soil fertility of vineyard calcareous soils.

5.
Anal Bioanal Chem ; 408(13): 3537-45, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26935930

RESUMEN

Early diagnosis of specific chloride toxicity in persimmon trees requires the reliable and fast determination of the leaf chloride content, which is usually performed by means of a cumbersome, expensive and time-consuming wet analysis. A methodology has been developed in this study as an alternative to determine chloride in persimmon leaves using near-infrared spectroscopy (NIRS) in combination with multivariate calibration techniques. Based on a training dataset of 134 samples, a predictive model was developed from their NIR spectral data. For modelling, the partial least squares regression (PLSR) method was used. The best model was obtained with the first derivative of the apparent absorbance and using just 10 latent components. In the subsequent external validation carried out with 35 external data this model reached r(2) = 0.93, RMSE = 0.16% and RPD = 3.6, with standard error of 0.026% and bias of -0.05%. From these results, the model based on NIR spectral readings can be used for speeding up the laboratory determination of chloride in persimmon leaves with only a modest loss of precision. The intermolecular interaction between chloride ions and the peptide bonds in leaf proteins through hydrogen bonding, i.e. N-H···Cl, explains the ability for chloride determinations on the basis of NIR spectra.


Asunto(s)
Cloruros/análisis , Diospyros/química , Hojas de la Planta/química , Espectroscopía Infrarroja Corta/métodos , Calibración , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Análisis de Componente Principal
6.
J Environ Manage ; 95 Suppl: S31-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21482021

RESUMEN

SALTIRSOIL (SALTs in IRrigated SOILs) is a model for the medium to long term simulation of soil salinity in irrigated, well-drained lands. Once the algorithms were verified, the objective of our study was to validate SALTIRSOIL under one of several water quality and management scenarios in Mediterranean agriculture. Because drip and surface are the most common irrigation systems in irrigated agriculture in Valencia (Spain), the validation was performed with climate, soil, irrigation water (composition and management) and crop (species and management) information from an experimental plot surface irrigated with well water and planted with watermelon that has been monitored since the late spring of 2007. To carry out the validation, first we performed a global sensitivity analysis (GSA). Second, we compared simulated soil saturation extract composition against measured data. According to the GSA, SALTIRSOIL calculations of soil salinity seem to be most affected by climate (rainfall and evapotranspiration) with 60% of explained soil salinity variance, water salinity with 26% of explained variance, and then irrigation with 4%. According to the closeness of the first comparisons between predictions and measurements, SALTIRSOIL does not seem to be affected by any systematic error, and as a consequence, neither inclusion of new parameters nor calibration of the others already included would be needed at least for surface irrigation. The validation of SALTIRSOIL continues under other water quality and irrigation management scenarios.


Asunto(s)
Modelos Teóricos , Suelo/química , Calidad del Agua , Riego Agrícola , Agricultura , Algoritmos , Citrullus , Productos Agrícolas , Lluvia , Salinidad , España
7.
J Environ Manage ; 79(2): 150-62, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16171939

RESUMEN

Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to establish the policy framework for actions focused on preventing soil degradation and conserving its productive potential.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Sistemas de Información Geográfica , Sedimentos Geológicos/análisis , Contaminantes del Suelo/análisis , Agricultura , Ecosistema , Agricultura Forestal , Sedimentos Geológicos/química , Región Mediterránea , Medición de Riesgo , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA