Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(15): 9476-9482, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885067

RESUMEN

Formamidinium lead iodide (FAPbI3) can be used in its cubic, black form as a light absorber material in single-junction solar cells. It has a band-gap (1.5 eV) close to the maximum of the Shockley-Queisser limit, and reveals a high absorption coefficient. Its high thermal stability up to 320 °C has also a downside, which is the instability of the photo-active form at room temperature (RT). Thus, the black α-phase transforms at RT with time into a yellow non-photo-active δ-phase. The black phase can be recovered by annealing of the yellow state. In this work, a polymorphism of the α-phase at room temperature was found: as-synthesized (αi), degraded (αδ) and thermally recovered (αrec). They differ in the Raman spectra and PL signal, but not in the XRD patterns. Using temperature-dependent Raman spectroscopy, we identified a structural change in the αi-polymorph at ca. 110 °C. Above 110 °C, the FAPbI3 structure has undoubtedly cubic Pm3[combining macron]m symmetry (high-temperature phase: αHT). Below that temperature, the αi-phase was suggested to have a distorted perovskite structure with Im3[combining macron] symmetry. Thermally recovered FAPbI3 (αrec) also demonstrated the structural transition to αHT at the same temperature (ca. 110 °C) during its heating. The understanding of hybrid perovskites may bring additional assets in the development of new and stable structures.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546135

RESUMEN

The past decade has seen enormous efforts in the investigation and development of reduced graphene oxide (GO) and its applications. Reduced graphene oxide (rGO) derived from GO is known to have relatively inferior electronic characteristics when compared to pristine graphene. Yet, it has its significance attributed to high-yield production from inexpensive graphite, ease of fabrication with solution processing, and thus a high potential for large-scale applications and commercialization. Amongst several available approaches for GO reduction, the mature use of plasma technologies is noteworthy. Plasma technologies credited with unique merits are well established in the field of nanotechnology and find applications across several fields. The use of plasma techniques for GO development could speed up the pathway to commercialization. In this report, we review the state-of-the-art status of plasma techniques used for the reduction of GO-films. The strength of various techniques is highlighted with a summary of the main findings in the literature. An analysis is included through the prism of chemistry and plasma physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA