Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 526(5): 877-898, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29218729

RESUMEN

Calretinin-expressing (CR+) interneurons are the most common type of striatal interneuron in primates. However, because CR+ interneurons are relatively scarce in rodent striatum, little is known about their molecular and other properties, and they are typically excluded from models of striatal circuitry. Moreover, CR+ interneurons are often treated in models as a single homogenous population, despite previous descriptions of their heterogeneous structures and spatial distributions in rodents and primates. Here, we demonstrate that, in rodents, the combinatorial expression of secretagogin (Scgn), specificity protein 8 (SP8) and/or LIM homeobox protein 7 (Lhx7) separates striatal CR+ interneurons into three structurally and topographically distinct cell populations. The CR+/Scgn+/SP8+/Lhx7- interneurons are small-sized (typically 7-11 µm in somatic diameter), possess tortuous, partially spiny dendrites, and are rostrally biased in their positioning within striatum. The CR+/Scgn-/SP8-/Lhx7- interneurons are medium-sized (typically 12-15 µm), have bipolar dendrites, and are homogenously distributed throughout striatum. The CR+/Scgn-/SP8-/Lhx7+ interneurons are relatively large-sized (typically 12-20 µm), and have thick, infrequently branching dendrites. Furthermore, we provide the first in vivo electrophysiological recordings of identified CR+ interneurons, all of which were the CR+/Scgn-/SP8-/Lhx7- cell type. In the primate striatum, Scgn co-expression also identified a topographically distinct CR+ interneuron population with a rostral bias similar to that seen in both rats and mice. Taken together, these results suggest that striatal CR+ interneurons comprise at least three molecularly, structurally, and topographically distinct cell populations in rodents. These properties are partially conserved in primates, in which the relative abundance of CR+ interneurons suggests that they play a critical role in striatal microcircuits.


Asunto(s)
Calbindina 2/metabolismo , Cuerpo Estriado/citología , Interneuronas/metabolismo , Potenciales de Acción/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Secretagoginas/metabolismo , Factores de Transcripción/metabolismo
2.
J Neurosci ; 37(41): 9977-9998, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28847810

RESUMEN

Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits.SIGNIFICANCE STATEMENT Chronic depletion of dopamine from the striatum, a part of the basal ganglia, causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters striatal neuron firing in vivo, with an emphasis on defining whether and how spiny projection neurons (SPNs) engage in the synchronized beta-frequency (15-30 Hz) oscillations that become pathologically exaggerated throughout basal ganglia circuits in parkinsonism. We discovered that a select population of so-called "indirect pathway" SPNs not only fire at abnormally high rates, but are also particularly prone to being recruited to exaggerated beta oscillations. Our results provide an important link between two complementary theories that explain the presentation of disease symptoms on the basis of changes in firing rate or firing synchronization/rhythmicity.


Asunto(s)
Ritmo beta , Cuerpo Estriado/fisiopatología , Vías Nerviosas/fisiopatología , Neuronas/patología , Trastornos Parkinsonianos/fisiopatología , Animales , Ganglios Basales/fisiopatología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Cuerpo Estriado/patología , Dopamina/metabolismo , Hidroxidopaminas , Masculino , Vías Nerviosas/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Ratas , Ratas Sprague-Dawley
3.
Case Rep Otolaryngol ; 2017: 5304242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28465850

RESUMEN

Primary tinnitus has a severe negative influence on the quality of life of a substantial portion of the general population. When acoustic coordinated reset (CR) neuromodulation stimuli are delivered for several hours per day over several weeks a clinically significant symptom reduction in patients with primary tonal tinnitus has been reported by several clinical sites. Here, we reported the first case where CR neuromodulation was delivered through a hearing aid. A 52-year-old man with chronic primary tonal tinnitus was previously considered untreatable with sound therapy. He initially received the classic CR treatment protocol with signals delivered with the separate proprietary device with his hearing aids removed during treatment. He was subsequently treated with the therapy being deployed through a set of contemporary hearing aids. After 5 months of classic CR treatment with the separate custom device, the THI and VASL/A scores worsened by 57% and 13%/14%, respectively. Using the hearing aid without CR treatment for 5 months no change in tinnitus symptoms was observed. However, after three months of CR treatment delivered through the hearing aids, the THI and VASL/A scores were reduced by 70% and 32%/32%, respectively.

4.
Elife ; 52016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27669410

RESUMEN

Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.


Asunto(s)
Cuerpo Estriado/fisiología , Interneuronas/fisiología , Neostriado/metabolismo , Parvalbúminas/metabolismo , Secretagoginas/metabolismo , Animales , Axones/fisiología , Ganglios Basales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cuerpo Estriado/citología , Femenino , Interneuronas/citología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley
5.
J Neurosci ; 35(17): 6667-88, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926446

RESUMEN

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.


Asunto(s)
Dopamina/metabolismo , Globo Pálido/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Núcleo Subtalámico/citología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Adrenérgicos/toxicidad , Animales , Animales Recién Nacidos , Proteínas ELAV/metabolismo , Proteína 3 Similar a ELAV , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Nucleares/metabolismo , Oxidopamina/toxicidad , Parvalbúminas/metabolismo , Ratas , Estadísticas no Paramétricas , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
6.
Front Neuroeng ; 5: 18, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22891059

RESUMEN

To better define the neural networks related to preparation of reaching, we applied transcranial magnetic stimulation (TMS) to the lateral parietal and frontal cortex. TMS did not evoke effects closely related to preparation of reaching, suggesting that neural networks already identified by our group are not larger than previously thought. We also replicated previous TMS/EEG data by applying TMS to the parietal cortex: new analyses were performed to better support reliability of already reported findings (Zanon et al., 2010; Brain Topography 22, 307-317). We showed the existence of neural circuits ranging from posterior to frontal regions of the brain after the stimulation of parietal cortex, supporting the idea of strong connections among these areas and suggesting their possible temporal dynamic. Connection with ventral stream was confirmed. The present work helps to define those areas which are involved in preparation of natural reaching in humans. They correspond to parieto-occipital, parietal and premotor medial regions of the left hemisphere, i.e., the contralateral one with respect to the moving hand, as suggested by previous studies. Behavioral data support the existence of a discrete stream involved in reaching. Besides the serial flow of activation from posterior to anterior direction, a parallel elaboration of information among parietal and premotor areas seems also to exist. Present cortico-cortical interactions (TMS/EEG experiment) show propagation of activity to frontal, temporal, parietal and more posterior regions, exhibiting distributed communication among various areas in the brain. The neural system highlighted by TMS/EEG experiments is wider with respect to the one disclosed by the TMS behavioral approach. Further studies are needed to unravel this paucity of overlap. Moreover, the understanding of these mechanisms is crucial for the comprehension of response inhibition and changes in prepared actions, which are common behaviors in everyday life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA