Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Phys ; 39(2): 851-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22320795

RESUMEN

PURPOSE: Manual segmentation of lung tumors is observer dependent and time-consuming but an important component of radiology and radiation oncology workflow. The objective of this study was to generate an automated lung tumor measurement tool for segmentation of pulmonary metastatic tumors from x-ray computed tomography (CT) images to improve reproducibility and decrease the time required to segment tumor boundaries. METHODS: The authors developed an automated lung tumor segmentation algorithm for volumetric image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center and the SCOMT algorithm subsequently created an initial surface that was deformed using level set SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling, distribution, background, shape, volume, smoothness, and curvature energies. RESULTS: The proposed segmentation algorithm was compared to manual segmentation whereby 21 tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors (RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measurements. Linear regression goodness-of-fit measures (r(2) = 0.63, p < 0.0001; r(2) = 0.87, p < 0.0001; and r(2) = 0.96, p < 0.0001), and Pearson correlation coefficients (r = 0.79, p < 0.0001; r = 0.93, p < 0.0001; and r = 0.98, p < 0.0001) for 1D, 2D, and 3D measurements, respectively, showed significant correlations between manual and algorithm results. Intra-observer intraclass correlation coefficients (ICC) demonstrated high reproducibility for algorithm (0.989-0.995, 0.996-0.997, and 0.999-0.999) and manual measurements (0.975-0.993, 0.985-0.993, and 0.980-0.992) for 1D, 2D, and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for algorithm (3.09%-4.67%, 4.85%-5.84%, and 5.65%-5.88%) and manual observers (4.20%-6.61%, 8.14%-9.57%, and 14.57%-21.61%) for 1D, 2D, and 3D measurements, respectively. CONCLUSIONS: The authors developed an automated segmentation algorithm requiring only that the operator select the tumor to measure pulmonary metastatic tumors in 1D, 2D, and 3D. Algorithm and manual measurements were significantly correlated. Since the algorithm segmentation involves selection of a single seed point, it resulted in reduced intra-observer variability and decreased time, for making the measurements.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Modelos Biológicos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Humanos , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Acad Radiol ; 18(11): 1391-402, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21917485

RESUMEN

RATIONALE AND OBJECTIVES: We evaluated the accuracy and reproducibility of three-dimensional (3D) measurements of lung phantoms and patient tumors from x-ray computed tomography (CT) and compared these to one-dimensional (1D) and two-dimensional (2D) measurements. MATERIALS AND METHODS: CT images of three spherical and three irregularly shaped tumor phantoms were evaluated by three observers who performed five repeated measurements. Additionally, three observers manually segmented 29 patient lung tumors five times each. Follow-up imaging was performed for 23 tumors and response criteria were compared. For a single subject, imaging was performed on nine occasions over 2 years to evaluate multidimensional tumor response. To evaluate measurement accuracy, we compared imaging measurements to ground truth using analysis of variance. For estimates of precision, intraobserver and interobserver coefficients of variation and intraclass correlations (ICC) were used. Linear regression and Pearson correlations were used to evaluate agreement and tumor response was descriptively compared. RESULTS: For spherical shaped phantoms, all measurements were highly accurate, but for irregularly shaped phantoms, only 3D measurements were in high agreement with ground truth measurements. All phantom and patient measurements showed high intra- and interobserver reproducibility (ICC >0.900). Over a 2-year period for a single patient, there was disagreement between tumor response classifications based on 3D measurements and those generated using 1D and 2D measurements. CONCLUSION: Tumor volume measurements were highly reproducible and accurate for irregular, spherical phantoms and patient tumors with nonuniform dimensions. Response classifications obtained from multidimensional measurements suggest that 3D measurements provide higher sensitivity to tumor response.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Análisis de Varianza , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Reproducibilidad de los Resultados
3.
Magn Reson Med ; 64(6): 1640-51, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20648678

RESUMEN

A novel method for decoupling coil elements of transmit/receive (transceive) arrays is reported. Each element of a coil array is shielded both concentrically and radially to reduce the magnetic flux linkage between neighboring coils; this substantially reduces the mutual inductance between coil elements and allows them to behave independently. A six-channel transceive coil was developed using this decoupling scheme and compared with two conventional decoupling schemes: the partial overlapping of adjacent elements and capacitive decoupling. The radiofrequency coils were designed to image the human head and were tested on a 7-T Varian scanner. The decoupling, transmit uniformity, transmit efficiency, signal-to-noise ratio, and geometry factors were compared between coils. The individually shielded coil achieved higher minimum isolation between elements (2.7-4.0 dB) and lower geometry factors (2-14%) than the overlapped and capacitively decoupled coils, while showing a reduction in transmit efficiency (2.8-5.9 dB) and signal-to-noise ratio (up to 34%). No difference was found in the power absorbed by the sample during a 90° radiofrequency pulse. The inset distance of coil elements within their shields was then reduced, resulting in significant improvement of the transmit efficiency (1.3 dB) and signal-to-noise ratio (28%). The greatest asset of this decoupling method lies in its versatility: transceive coils can be created with elements of arbitrary shape, size, location, and resonant frequency to produce three-dimensional conformal arrays.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/instrumentación , Diseño de Equipo , Humanos , Fantasmas de Imagen , Ondas de Radio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA