RESUMEN
Glycocins are antimicrobial peptides with glycosylations, often an S-linked monosaccharide. Their recent structure elucidation has brought forth questions about their mechanisms of action as well as the impact of S-glycosylation on their structural behavior. Here, we investigated structural characteristics of glycocins using a computational approach. Depending on the peptide's class (sublancin- or glycocin F-like), the sugar changes the peptide's flexibility. Also, the presence of glycosylation is necessary for the lack of structure of Asm1. The C-terminal tail in glycocin F-like peptides influenced their structured regions, acting like a regulator. These findings corroborate the versatility of these post-translational modifications, pointing toward their potential use in molecular engineering.
Asunto(s)
Bacteriocinas , Bacteriocinas/metabolismo , Carbohidratos , Glicosilación , PéptidosRESUMEN
AIMS: This study investigated the antinociceptive and anti-inflammatory effects of new pyrazole compounds LQFM011(5), LQFM043(6) and LQFM044(7) as well as the mechanisms of action and acute in vitro toxicity. MAIN METHODS: The antinociceptive activity was evaluated using the acetic acid-induced abdominal writhing test, formalin-induced pain test and the Randall-Selitto test. The anti-inflammatory activity was evaluated using models of paw oedema and pleurisy induced by carrageenan; cell migration, the levels of tumour necrosis factor α (TNF-α) and myeloperoxidase (MPO) enzyme activity were evaluated. In addition, the ability to inhibit phospholipase A2 (PLA2) in vitro and docking in PLA2 were used. Acute oral systemic toxicity in mice was evaluated through the neutral red uptake assay. KEY FINDINGS: The synthesised compounds (5-7), delivered via gavage (p.o.) at 70, 140 or 280 µmol/kg, decreased the number of writhings induced by acetic acid; the three compounds (280 µmol/kg p.o.) reduced the paw licking time in the first and second phase of the formalin test and decreased the nociceptive threshold variation in the Randall-Selitto test. Furthermore, this dose reduced oedema formation, leucocyte migration (specifically through reduction in polymorphonuclear cell movement) and increased mononuclear cells. MPO activity and the levels of pro-inflammatory cytokines TNF-α were decreased. Evaluation of PLA2 inhibition via the docking simulation revealed more interactions of LQFM043R(6) and LQFM044(7), data that corroborated the half-maximal inhibitory concentration (IC50) of PLA2 inhibition in vitro. Therefore, LQFM011(5), LQFM043(6) and LQFM044(7) were classified with the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) as category 4.
Asunto(s)
Pirazoles/síntesis química , Pirazoles/farmacología , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Femenino , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Ratones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dimensión del Dolor/métodos , Pleuresia/tratamiento farmacológico , Pleuresia/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Recently, a novel cocktail antigen tick-vaccine was developed based on the recombinant glutathione S-transferase (rGST) anti-sera cross-reaction to glutathione S-transferases of Rhipicephalus appendiculatus (GST-Ra), Amblyomma variegatum (GST-Av), Haemaphysalis longicornis (GST-Hl), Rhipicephalus decoloratus (GST-Rd) and Rhipicephalus microplus (GST-Rm). Therefore, the current study aimed to predict the shared B-cell epitopes within the GST sequences of these tick species. Prediction of B-cell epitopes and proteasomal cleavage sites were performed using immunoinformatics algorithms. The conserved epitopes predicted within the sequences were mapped on the homodimers of the respective tick GSTs, and the corresponding peptides were independently used for rabbit immunization experiments. Based on the dot blot assay, the immunogenicity of the peptides and their potential to be recognized by corresponding rGST anti-sera raised by rabbit immunization in a previous work were investigated. This study revealed that the predicted conserved B-cell epitopes within the five tick GST sequences were localized on the surface of the respective GST homodimers. The epitopes of GST-Ra, GST-Rd, GST-Av, and GST-Hl were also shown to contain a seven residue-long peptide sequence with no proteasomal cleavage sites, whereas proteasomal digestion of GST-Rm was predicted to yield a 4-residue fragment. Given that a few proteasomal cleavage sites were found within the conserved epitope sequences of the four GSTs, the sequences could also contain a T-cell epitope. Finally, the peptide and rGST anti-sera reacted against the corresponding peptide, confirming their immunogenicity. These data support the claim that the rGSTs, used in the previous study, contain conserved B-cell epitopes, which elucidates why the rGST anti-sera cross-reacted to non-homologous tick GSTs. Taken together, the data suggest that the B-cell epitopes predicted in this study could be useful for constituting epitope-based GST tick vaccines.
Asunto(s)
Epítopos de Linfocito B/inmunología , Glutatión Transferasa/inmunología , Inmunogenicidad Vacunal/inmunología , Ixodidae/inmunología , Control de Ácaros y Garrapatas , Vacunación/métodos , Secuencia de Aminoácidos , Animales , Epítopos de Linfocito B/metabolismo , Glutatión Transferasa/metabolismo , Ixodidae/enzimología , Complejo de la Endopetidasa ProteasomalRESUMEN
Root hairs (RHs) develop from specialized epidermal trichoblast cells, whereas epidermal cells that lack RHs are known as atrichoblasts. The mechanism controlling RH cell fate is only partially understood. RH cell fate is regulated by a transcription factor complex that promotes the expression of the homeodomain protein GLABRA 2 (GL2), which blocks RH development by inhibiting ROOT HAIR DEFECTIVE 6 (RHD6). Suppression of GL2 expression activates RHD6, a series of downstream TFs including ROOT HAIR DEFECTIVE 6 LIKE-4 (RSL4) and their target genes, and causes epidermal cells to develop into RHs. Brassinosteroids (BRs) influence RH cell fate. In the absence of BRs, phosphorylated BIN2 (a Type-II GSK3-like kinase) inhibits a protein complex that regulates GL2 expression. Perturbation of the arabinogalactan peptide (AGP21) in Arabidopsis thaliana triggers aberrant RH development, similar to that observed in plants with defective BR signaling. We reveal that an O-glycosylated AGP21 peptide, which is positively regulated by BZR1, a transcription factor activated by BR signaling, affects RH cell fate by altering GL2 expression in a BIN2-dependent manner. Changes in cell surface AGP disrupts BR responses and inhibits the downstream effect of BIN2 on the RH repressor GL2 in root epidermis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3 , Mucoproteínas , Proteínas de Plantas , Raíces de Plantas/metabolismo , Proteínas QuinasasRESUMEN
The search for new drugs remains an important focus for the safe and effective treatment of cardiovascular diseases. Previous evidence has shown that choline analogs can offer therapeutic benefit for cardiovascular complications. The current study investigates the effects of 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol (LQFM032) on cardiovascular function and cholinergic-nitric oxide signaling. Synthesized LQFM032 (0.3, 0.6, or 1.2 mg/kg) was administered by intravenous and intracerebroventricular routes to evaluate the potential alteration of mean arterial pressure, heart rate, and renal sympathetic nerve activity of normotensive and hypertensive rats. Vascular function was further evaluated in isolated vessels, while pharmacological antagonists and computational studies of nitric oxide synthase and muscarinic receptors were performed to assess possible mechanisms of LQFM032 activity. The intravenous and intracerebroventricular administration of LQFM032 elicited a temporal reduction in mean arterial pressure, heart rate, and renal sympathetic nerve activity of rats. The cumulative addition of LQFM032 to isolated endothelium-intact aortic rings reduced vascular tension and elicited a concentration-dependent relaxation. Intravenous pretreatment with L-NAME (nitric oxide synthase inhibitor), atropine (nonselective muscarinic receptor antagonist), pirenzepine, and 4-DAMP (muscarinic M1 and M3 subtype receptor antagonist, respectively) attenuated the cardiovascular effects of LQFM032. These changes may be due to a direct regulation of muscarinic signaling as docking data shows an interaction of choline analog with M1 and M3 but not nitric oxide synthase. Together, these findings demonstrate sympathoinhibitory, hypotensive, and antihypertensive effects of LQFM032 and suggest the involvement of muscarinic receptors.
Asunto(s)
Antihipertensivos/farmacología , Hipotensión/fisiopatología , Piperazinas/farmacología , Pirazoles/farmacología , Receptor Muscarínico M1/fisiología , Receptor Muscarínico M3/fisiología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiología , Atropina/farmacología , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/inducido químicamente , Masculino , Antagonistas Muscarínicos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Piperidinas/farmacología , Pirenzepina/farmacología , Ratas Endogámicas SHR , Ratas WistarRESUMEN
Olefinic staples enhance α-helical content and conformational stability in peptides, maintaining a structural scaffold that allows the emulation of specific regions of protein surfaces for therapeutical purposes. The ability to anticipate the efficacy of adding a staple to a peptide through computational simulations may contribute to lowering the costs associated with rational drug design. We evaluated the capabilities of different force fields to reproduce the effect of all-hydrocarbon staples in molecular dynamics simulations. Using the AMBER99SB-ILDN, CHARMM36, and GROMOS54A7 force fields and two distinct initial conformations, we compared our results to experimentally obtained circular dichroism data. The GROMOS54A7 united-atom force field seems to be more accurate compared with all-atom force fields, despite being unable to reproduce the effect of the staple in some of the simulated systems. With further force field enhancements, MD simulations may be used to anticipate conformational effects of all-hydrocarbon staples in peptides.
Asunto(s)
Alquenos/química , Simulación de Dinámica Molecular , Péptidos/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Teoría Cuántica , TermodinámicaRESUMEN
Nonsteroidal anti-inflammatory drugs are commonly used worldwide; however, they have several adverse effects, evidencing the need for the development of new, more effective and safe anti-inflammatory and analgesic drugs. This research aimed to design, synthesize and carry out a pharmacological/toxicological investigation of LQFM-102, which was designed from celecoxib and paracetamol by molecular hybridization. To evaluate the analgesic effect of this compound, we performed formalin-induced pain, hot plate and tail flick tests. The anti-inflammatory effect of LQFM-102 was evaluated in carrageenan-induced paw oedema and pleurisy tests. The biochemical markers indicative of toxicity-AST, ALT, GSH, urea and creatinine-as well as the index of gastric lesion after prolonged administration of LQFM-102 were also analyzed. In addition, the interaction of LQFM-102 with COX enzymes was evaluated by molecular docking. In all experimental protocols, celecoxib or paracetamol was used as a positive control at equimolar doses to LQFM-102. LQFM-102 reduced the pain induced by formalin in both phases of the test. However, this compound did not increase the latency to thermal stimuli in the hot plate and tail flick tests, suggesting an involvement of peripheral mechanisms in this effect. Furthermore, LQFM-102 reduced paw oedema, the number of polymorphonuclear cells, myeloperoxidase activity and TNF-α and IL-1ß levels. Another interesting finding was the absence of alterations in the markers of hepatic and renal toxicity or lesions of gastric mucosa. In molecular docking simulations, LQFM-102 interacted with the key residues for activity and potency of cyclooxygenase enzymes, suggesting an inhibition of the activity of these enzymes.
Asunto(s)
Acetaminofén/química , Antiinflamatorios no Esteroideos/síntesis química , Celecoxib/química , Simulación del Acoplamiento Molecular , Acetaminofén/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/toxicidad , Celecoxib/farmacología , Movimiento Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/síntesis química , Inhibidores de la Ciclooxigenasa/farmacología , Diseño de Fármacos , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/análisisRESUMEN
Dual 5-LOX/COX inhibitors are potential new dual drugs to treat inflammatory conditions. This research aimed to design, synthesis and to evaluate the anti-inflammatory and antinociceptive effects of the new compound, which is derived from nimesulide and darbufelone lead compounds. The new dual inhibitor 5-LOX/COX has the possible advantage of gastrointestinal safety. A voltammetric experiment was conducted to observe the drug's antioxidative effect. A formalin test, a hot plate test and carrageenan-induced mechanical hyperalgesia were employed to evaluate the analgesic nature of LQFM-091. To evaluate anti-inflammatory activity, we measured edema, leukocyte count, myeloperoxidase activity and cytokines levels in carrageenan-induced inflammation tests. We elucidated the underlying mechanisms by assessing the interaction the with COXs and LOX enzymes by colorimetric screening assay and molecular docking. The lethal dose (LD50) was estimated using 3T3 Neutral Red Uptake assay. Our results indicate that the LQFM-091 prototype is a powerful antioxidant, as well as able to inhibit COX-1, COX-2 and LOX activities. LQFM091 was classified in GHS category 4 (300Asunto(s)
Inhibidores de la Ciclooxigenasa/uso terapéutico
, Inhibidores de la Lipooxigenasa/uso terapéutico
, Fenoles/uso terapéutico
, Células 3T3
, Animales
, Carragenina
, Supervivencia Celular/efectos de los fármacos
, Inhibidores de la Ciclooxigenasa/farmacología
, Citocinas/inmunología
, Edema/inducido químicamente
, Edema/tratamiento farmacológico
, Femenino
, Calor
, Hiperalgesia/inducido químicamente
, Hiperalgesia/tratamiento farmacológico
, Recuento de Leucocitos
, Lipooxigenasa/metabolismo
, Inhibidores de la Lipooxigenasa/farmacología
, Ratones
, Simulación del Acoplamiento Molecular
, Dimensión del Dolor
, Peroxidasa/inmunología
, Fenoles/farmacología
, Estimulación Física
, Pleuresia/inducido químicamente
, Pleuresia/tratamiento farmacológico
, Pleuresia/inmunología
, Prostaglandina-Endoperóxido Sintasas/metabolismo
, Úlcera Gástrica/inducido químicamente
, Úlcera Gástrica/tratamiento farmacológico
, Sulfonamidas
RESUMEN
BACKGROUND: Triatomine bugs (Hemiptera: Reduviidae) are vectors of the flagellate Trypanosoma cruzi, the causative agent of Chagas disease. The study of triatomine gut microbiota has gained relevance in the last years due to its possible role in vector competence and prospective use in control strategies. The objective of this study is to examine changes in the gut microbiota composition of triatomines in response to a T. cruzi-infected blood meal and identifying key factors determining those changes. RESULTS: We sampled colony-reared individuals from six triatomine vectors (Panstrongylus megistus, Rhodnius prolixus, Triatoma brasiliensis, T. infestans, T. juazeirensis and T. sherlocki) comparing experimentally T. cruzi strain 0354-challenged and non-challenged insects. The microbiota of gut and gonad tissues was characterized using high throughput sequencing of region V3-V4 of bacterial 16S rRNA gene. The triatomine microbiota had a low intra-individual diversity, and a high inter-individual variation within the same host species. Arsenophonous appeared as the dominant triatomine bacterial symbiont in our study (59% of the total 16S coverage), but there were significant differences in the distribution of bacterial genera among vectors. In Rhodnius prolixus the dominant symbiont was Pectobacterium. CONCLUSIONS: Trypanosoma cruzi-challenge significantly affects microbiota composition, with challenged vectors harbouring a significantly more diverse bacterial community, both in the gut and the gonads. Our results show that blood-feeding with T. cruzi epimastigotes strongly affects microbiota composition in a species-specific manner. We suggest that triatomine-adapted enterobacteria such as Arsenophonus could be used as stable vectors for genetic transformation of triatomine bugs and control of Chagas disease.
Asunto(s)
Microbioma Gastrointestinal , Insectos Vectores/microbiología , Insectos Vectores/parasitología , Triatominae/microbiología , Triatominae/parasitología , Trypanosoma/aislamiento & purificación , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Filogenia , Estudios Prospectivos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
OBJECTIVE: The activation of the p53 pathway through the inhibition of MDM2 has been proposed as a novel therapeutic strategy against tumours. A series of cis-imidazoline analogues, termed nutlins, were reported to displace the recombinant p53 protein from its complex with MDM2 by binding to MDM2 in the p53 pocket, and exhibited an antitumour activity both in vitro and in vivo. Thus, the purpose of this study was to evaluate the antitumour properties of LQFM030 (2), a nutlin analogue created by employing the strategy of molecular simplification. METHODS: LQFM030 (2) cytotoxicity was evaluated in Ehrlich ascites tumour (EAT) cells, p53 wild type, by the trypan blue exclusion test, and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry, real-time PCR and Western blotting. KEY FINDINGS: Our results demonstrate that LQFM030 has dose-dependent antiproliferative activity and cytotoxic activity on EAT cells, induces the accumulation of p53 protein and promotes cell cycle arrest and apoptosis. p53 gene transcription was unaffected by LQFM030 (2); however, MDM2 mRNA increased and MDM2 protein decreased. CONCLUSIONS: These results suggest that the small-molecule p53 activator LQFM030 (2) has the potential for further development as a novel cancer therapeutic agent.