Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(3): 725-742, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34958126

RESUMEN

The esterification reactions catalyzed by lipases are among the most significant biochemical processes of industrial relevance. The lipases have the function of versatility by catalyzing a diversity of reactions with extreme ease, obtaining quality products with high yield. Therefore, enzyme-catalyzed esterification has gained increasing attention in many applications, due to the importance of derived products. More specifically, lipase-catalyzed esterification reactions have attracted interest in research over the past decade, due to the increased use of organic esters in the chemical and biotechnology industry. These esters can be obtained by three techniques: extraction from natural sources, chemical and enzymatic syntheses. Biotechnological processes have offered several advantages and are shown as a competitive alternative to chemical methods due to high catalytic efficiency, mild operating conditions, and selectivity of natural catalysts. These an industrial point of view, reactions catalyzed by enzymes are the most economical approach to achieve green products with no toxicity and no harm to human health. Thus, this review presents a descriptive evaluation of the trends and perspectives applied to enzymatic esterification, mainly for the synthesis of esters with different properties, such as aromatics, emulsifiers, and lubricants using the esterification process. An emphasis is given to essential factors, which affect the lipase-catalyzed esterification reaction. In which, the parameters are dependent on the lipase source, a form of the biocatalyst (free or immobilized), the polarity of the reaction medium, the molar ratio between alcohol and acid, among other variables, are also discussed.


Asunto(s)
Enzimas Inmovilizadas , Ésteres , Biocatálisis , Biotransformación , Enzimas Inmovilizadas/metabolismo , Esterificación , Ésteres/metabolismo , Etanol , Humanos , Lipasa/química , Lubricantes
2.
Bioprocess Biosyst Eng ; 44(10): 2205-2215, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34089091

RESUMEN

This study investigated the glycerolysis of babassu oil by Burkholderia cepacia lipase immobilized on SiO2-PVA particles in a continuous packed bed reactor. Experiments were conducted in a solvent-free system at 273.15 K either in an inert atmosphere or in the presence of cocoa butter to prevent lipid oxidation. The reactor (15 × 55 mm) was run at a fixed space time of 9.8 h using different molar ratios of babassu oil to glycerol (1:3, 1:6, 1:9, 1:12, and 1:15) to assess the effects of reactant molar ratio on monoacylglycerol productivity and selectivity. Nitrogen atmosphere and cocoa butter were equally effective in inhibiting lipid oxidation, indicating that addition of cocoa butter to glycerolysis reactions may be an interesting cost-reduction strategy. An oil/glycerol molar ratio of 1:9 resulted in the highest productivity (52.3 ± 2.9 mg g-1 h-1) and selectivity (31.5 ± 1.8%). Residence time distribution data were fitted to an axial dispersion model for closed-vessel boundary conditions, giving a mass transfer coefficient (kc) of 3.4229 × 10-6 m s-1. A kinetic model based on elementary steps of the studied reaction was written in Scilab and compared with experimental data, providing standard deviations in the range of 5.5-7.5%.


Asunto(s)
Arecaceae/metabolismo , Reactores Biológicos , Burkholderia cepacia/enzimología , Enzimas Inmovilizadas/metabolismo , Glicerol/metabolismo , Lipasa/metabolismo , Monoglicéridos/metabolismo , Aceites de Plantas/metabolismo , Antioxidantes/metabolismo , Grasas de la Dieta/metabolismo , Hidrólisis , Cinética , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA