Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 42(7): 1364-1376, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35038335

RESUMEN

Drought-related tree mortality is a global phenomenon that currently affects a wide range of forests. Key functional variables on plant hydraulics, carbon economy, growth and allocation have been identified and play a role in tree drought responses. However, tree mortality thresholds based on such variables are difficult to identify, especially under field conditions. We studied several Aleppo pine populations differently affected by an extreme drought event in 2014, with mortality rates ranging from no mortality to 90% in the most severely affected population. We hypothesized that mortality is linked with high levels of xylem embolism, i.e., hydraulic dysfunction, which would also lead to lower tree resistance to drought in subsequent years. Despite not finding any differences among populations in the vulnerability curves to xylem embolism, there were large differences in the hydraulic safety margin (HSM) and the hydraulic dysfunction level. High mortality rates were associated with a negative HSM when xylem embolism reached values over 60%. We also found forest weakening and post-drought mortality related to a low hydraulic water transport capacity, reduced plant growth, low carbohydrate contents and high pest infestation rates. Our results highlight the importance of drought severity and the hydraulic dysfunction level on pine mortality, as well as post-drought conditions during recovery processes.


Asunto(s)
Pinus , Árboles , Sequías , Bosques , Pinus/fisiología , Árboles/fisiología , Agua/fisiología , Xilema/fisiología
2.
J Exp Bot ; 54(390): 2015-24, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12885857

RESUMEN

Seedling shrubs in the Mediterranean semi-arid climate are subjected to intense droughts during summer. Thus, seedlings often surpass their limits of tolerance to water stress, resulting in the loss of hydraulic conductivity due to xylem cavitation. The response in terms of stomatal conductance, vulnerability to cavitation, leaf dieback, and survival were analysed in two co-occurring seedlings of mastic tree (Pistacia lentiscus L.) and kermes oak (Quercus coccifera L.) during an intense drought period. Both species reacted to drought with steep decreases in stomatal conductance before the critical water potential brought about the onset of cavitation events. Q. coccifera showed wider safety margins for avoiding runaway embolism than P. lentiscus and these differences could be related to the particular drought strategy displayed by each species: water saver or water spender. The limits for survival, resprout capacity and leaf dieback were also analysed in terms of loss of conductivity. By contrast with previous studies, the species showing higher seedling survival in the presence of drought also showed higher susceptibility to cavitation and operated with a lower safety margin for cavitation. Both species showed a leaf specific conductivity (LSC) threshold below which leaf biomass had to be regulated to avoid runaway embolism. However, each species displayed a different type of response: P. lentiscus conserved total leaf area up to 100% loss of LSC, whereas Q. coccifera continuously adjusted leaf biomass throughout the drought period in order to maintain the LSC very close to the maximum values recorded without loss of conductivity. Both species maintained the capacity for survival until the loss of conductivity was very nearly 100%.


Asunto(s)
Desastres , Hojas de la Planta/fisiología , Árboles/fisiología , Clima , Desecación , Región Mediterránea , Pistacia/crecimiento & desarrollo , Pistacia/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA