Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34947253

RESUMEN

We report on an ultrarapid (6 s) consolidation of binder-less WC using a novel Ultrahigh temperature Flash Sintering (UFS) approach. The UFS technique bridges the gap between electric resistance sintering (≪1 s) and flash spark plasma sintering (20-60 s). Compared to the well-established spark plasma sintering, the proposed approach results in improved energy efficiency with massive energy and time savings while maintaining a comparable relative density (94.6%) and Vickers hardness of 2124 HV. The novelty of this work relies on (i) multiple steps current discharge profile to suit the rapid change of electrical conductivity experienced by the sintering powder, (ii) upgraded low thermal inertia CFC dies and (iii) ultra-high consolidation temperature approaching 2750 °C. Compared to SPS process, the UFS process is highly energy efficient (≈200 times faster and it consumes ≈95% less energy) and it holds the promise of energy efficient and ultrafast consolidation of several conductive refractory compounds.

2.
Mater Sci Eng C Mater Biol Appl ; 127: 112246, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34225885

RESUMEN

Due to unique osteogenic properties, tricalcium phosphate (TCP) has gained relevance in the field of bone repair. The development of novel and rapid sintering routes is of particular interest since TCP undergoes to high-temperature phase transitions and is widely employed in osteoconductive coatings on thermally-sensitive metal substrates. In the present work, TCP bioceramics was innovatively obtained by Ultrafast High-temperature Sintering (UHS). Ca-deficient hydroxyapatite nano-powder produced by mechanochemical synthesis of mussel shell-derived calcium carbonate was used to prepare the green samples by uniaxial pressing. These were introduced within a graphite felt which was rapidly heated by an electrical current flow, reaching heating rates exceeding 1200 °C min-1. Dense (> 93%) ceramics were manufactured in less than 3 min using currents between 25 and 30 A. Both ß and α-TCP were detected in the sintered components with proportions depending on the applied current. Preliminary tests confirmed that the artifacts do not possess cytotoxic effects and possess mechanical properties similar to conventionally sintered materials. The overall results prove the applicability of UHS to bioceramics paving the way to new rapid processing routes for biomedical components.


Asunto(s)
Materiales Biocompatibles , Fosfatos de Calcio , Cerámica , Calor , Ensayo de Materiales , Temperatura
3.
Inorg Chem ; 60(11): 7617-7621, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34028253

RESUMEN

High-entropy ceramics is a new class of materials having a great potential and wide application. The carbide of Ti, Zr, Hf, Ta, Nb is a typical member of this group. It has been synthesized mostly through blending, milling, and high-temperature solid-state reaction of metal carbide precursors for each metal. This route needs extremely high temperature (2300 °C), which makes it energy and technology demanding. We have developed a chemical route for high-entropy carbide powder that needs a synthetic temperature that is several hundred degrees Celsius lower. A solution of desired metal citrates with an excess of citric acid was converted into a metal oxide/active carbon nanocomposite. Starting from a solution enabled ideal mixing of precursors on a molecular level, allowing us to skip any milling and blending steps. The nanocomposite was treated in vacuum at 1600 °C, giving a phase-pure high-entropy carbide. The intermediate compounds and products were characterized by means of solid-state analysis.

4.
Materials (Basel) ; 13(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429131

RESUMEN

In this work, CoCrNi, FeCoCrNi and CoCrFeMnNi concentrated alloys with a Y-Ti oxide particle dispersion were prepared by mechanical alloying and Spark Plasma Sintering. The alloy consists of an FCC Ni-based matrix with a Y-Ti oxide dispersion and additional phases of Cr23C6 and Cr2O3. The effect of Fe, Mn, and Y-Ti oxide particles on the formation of oxide scales and the composition of the adjacent CoCrNi and FeCoCrNi alloys was studied. It was found that alloys without Mn in their composition form a protective Cr2O3 scale. The Cr23C6 particles provide an alternative mechanism for balancing the chromium loss during the oxidation. Y and Ti from the oxide particles participate in the formation of the protective oxide scales. Fe promotes Y and especially Ti diffusion through the Cr2O3 scale, resulting in the formation of Ti-depleted regions in the alloy. The findings will serve for the further development of these new materials.

5.
Materials (Basel) ; 12(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31817034

RESUMEN

High entropy alloys (HEA) have been one of the most attractive groups of materials for researchers in the last several years. Since HEAs are potential candidates for many (e.g., refractory, cryogenic, medical) applications, their properties are studied intensively. The most frequent method of HEA synthesis is arc or induction melting. Powder metallurgy is a perspective technique of alloy synthesis and therefore in this work the possibilities of synthesis of HfNbTaTiZr HEA from powders were studied. Blended elemental powders were sintered, hot isostatically pressed, and subsequently swaged using a special technique of swaging where the sample is enveloped by a titanium alloy. This method does not result in a full density alloy due to cracking during swaging. Spark plasma sintering (SPS) of mechanically alloyed powders resulted in a fully dense but brittle specimen. The most promising result was obtained by SPS treatment of gas atomized powder with low oxygen content. The microstructure of HfNbTaTiZr specimen prepared this way can be refined by high pressure torsion deformation resulting in a high hardness of 410 HV10 and very fine microstructure with grain size well below 500 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA