Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Macro Lett ; : 1311-1317, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291832

RESUMEN

Disparate polymers often do not mix well, and the resulting immiscible interfaces are mechanically weaker than the bulk, which is undesirable for many technological applications. Large-scale molecular simulations are performed to demonstrate the effectiveness of diblock ring polymers as a new type of adhesive for immiscible polymer interfaces. The peak stress σp and the failure strain γp upon shear deformation approach the bulk values with increasing diblock ring length and coverage. Breaking the diblock rings into pairs of diblock linear chains creates a reference system for comparison. The diblock rings increase both σp and γp compared to the diblock linear chains at the same coverage. Further topological analysis based on the Gauss Linking Number reveals that the threading of diblock rings by linear chains from the two opposite sides is the key mechanism for stronger adhesion, which is analogous to the hook-and-loop process in Velcro tape.

2.
J Phys Chem B ; 127(37): 8002-8008, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37676921

RESUMEN

We perform all-atom molecular dynamics simulations of lithium triflate in 1,2-dimethoxyethane using six different literature force fields. This system is representative of many experimental studies of lithium salts in solvents and polymers. We show that multiple historically common force fields for lithium ions give qualitatively incorrect results when compared with those from experiments and quantum chemistry calculations. We illustrate the importance of correctly selecting force field parameters and give recommendations on the force field choice for lithium electrolyte applications.

3.
Macromolecules ; 56(24): 9994-10005, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38161325

RESUMEN

We study a binary blend of telechelic homopolymers that can form reversible AB-type bonds at the chain ends. Reversibly bonding polymers display novel material properties, including thermal tunability and self-healing, that are not found in conventional covalently bonded polymers. Previous studies of reversibly bonding polymer systems have been limited by the computational demand of accounting for an infinite number of possible reaction products in a spatially inhomogeneous, self-assembled structure. We demonstrate that newly developed theoretical models and numerical methods enable the simultaneous computation of phase equilibrium, reaction equilibrium, and self-assembly via self-consistent field theory. Phase diagrams are computed at a variety of physically relevant conditions and are compared with nonreactive analogues as well as previous experimental studies of telechelic polymer blends.

4.
ACS Polym Au ; 2(5): 299-312, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36267546

RESUMEN

The small specific entropy of mixing of high molecular weight polymers implies that most blends of dissimilar polymers are immiscible with poor physical properties. Historically, a wide range of compatibilization strategies have been pursued, including the addition of copolymers or emulsifiers or installing complementary reactive groups that can promote the in situ formation of block or graft copolymers during blending operations. Typically, such reactive blending exploits reversible or irreversible covalent or hydrogen bonds to produce the desired copolymer, but there are other options. Here, we argue that ionic bonds and electrostatic correlations represent an underutilized tool for polymer compatibilization and in tailoring materials for applications ranging from sustainable polymer alloys to organic electronics and solid polymer electrolytes. The theoretical basis for ionic compatibilization is surveyed and placed in the context of existing experimental literature and emerging classes of functional polymer materials. We conclude with a perspective on how electrostatic interactions might be exploited in plastic waste upcycling.

5.
J Am Chem Soc ; 143(35): 14106-14114, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34448579

RESUMEN

The hexagonally close-packed (HCP) sphere phase is predicted to be stable across a narrow region of linear block copolymer phase space, but the small free energy difference separating it from face-centered cubic spheres usually results in phase coexistence. Here, we report the discovery of pure HCP spheres in linear block copolymer melts with A = poly(2,2,2-trifluoroethyl acrylate) ("F") and B = poly(2-dodecyl acrylate) ("2D") or poly(4-dodecyl acrylate) ("4D"). In 4DF diblocks and F4DF triblocks, the HCP phase emerges across a substantial range of A-block volume fractions (circa fA = 0.25-0.30), and in F4DF, it forms reversibly when subjected to various processing conditions which suggests an equilibrium state. The time scale associated with forming pure HCP upon quenching from a disordered liquid is intermediate to the ordering kinetics of the Frank-Kasper σ and A15 phases. However, unlike σ and A15, HCP nucleates directly from a supercooled liquid or soft solid without proceeding through an intermediate quasicrystal. Self-consistent field theory calculations indicate the stability of HCP is intimately tied to small amounts of molar mass dispersity (D); for example, an HCP-forming F4DF sample with fA = 0.27 has an experimentally measured D = 1.04. These insights challenge the conventional wisdom that pure HCP is difficult to access in linear block copolymer melts without the use of blending or other complex processing techniques.


Asunto(s)
Resinas Acrílicas/química , Transición de Fase , Temperatura de Transición
6.
ACS Macro Lett ; 8(11): 1402-1406, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35651192

RESUMEN

We present a new methodology for polymer self-consistent field theory (SCFT) that has spectral accuracy in the contour dimension while retaining linear scaling of computational effort with system size. In contrast, traditional linear-scaling algorithms only have polynomial order accuracy. The improved accuracy allows for faster simulations and lower memory costs compared to traditional algorithms. The new spectral methods are enabled by converting from an auxiliary field representation to a recently developed "polymer coherent states" framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA