Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 24(56): 15112-15118, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021050

RESUMEN

This study reports the ability of synthetically simple, commercially viable sugar-derived 1,3:2,4-dibenzylidenesorbitol-4',4"-diacylhydrazide (DBS-CONHNH2 ) to support cell growth. Simple mixing and orthogonal self-sorting can formulate heparin, agarose, and heparin-binding micelles into these gels-easily incorporating additional function. Interestingly, the components used in the gel formulation, direct the ability of cells to grow, meaning the chemical programming of these multi-component gels is directly translated to the biological systems in contact with them. This simple approach has potential for future development in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Proliferación Celular , Fibroblastos/citología , Hidrogeles/química , Sorbitol/análogos & derivados , Células 3T3 , Animales , Anticoagulantes/administración & dosificación , Anticoagulantes/farmacología , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Fibroblastos/metabolismo , Heparina/administración & dosificación , Heparina/farmacología , Ratones , Micelas , Andamios del Tejido/química
2.
Chem Sci ; 8(10): 6981-6990, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29147525

RESUMEN

This paper reports self-assembled multi-component hybrid hydrogels including a range of nanoscale systems and characterizes the extent to which each component maintains its own unique functionality, demonstrating that multi-functionality can be achieved by simply mixing carefully-chosen constituents. Specifically, the individual components are: (i) pH-activated low-molecular-weight gelator (LMWG) 1,3;2,4-dibenzylidenesorbitol-4',4''-dicarboxylic acid (DBS-COOH), (ii) thermally-activated polymer gelator (PG) agarose, (iii) anionic biopolymer heparin, and (iv) cationic self-assembled multivalent (SAMul) micelles capable of binding heparin. The LMWG still self-assembles in the presence of PG agarose, is slightly modified on the nanoscale by heparin, but is totally disrupted by the micelles. However, if the SAMul micelles are bound to heparin, DBS-COOH self-assembly is largely unaffected. The LMWG endows hybrid materials with pH-responsive behavior, while the PG provides mechanical robustness. The rate of heparin release can be controlled through network density and composition, with the LMWG and PG behaving differently in this regard, while the presence of the heparin binder completely inhibits heparin release through complexation. This study demonstrates that a multi-component approach can yield exquisite control over self-assembled materials. We reason that controlling orthogonality in such systems will underpin further development of controlled release systems with biomedical applications.

3.
Chem Commun (Camb) ; 53(84): 11580-11583, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28990600

RESUMEN

We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.


Asunto(s)
Heparina/química , Nanoestructuras/química , Polímeros/química , Sitios de Unión , Tampones (Química) , Estructura Molecular , Polielectrolitos , Electricidad Estática , Agua/química
4.
J Mater Chem B ; 5(2): 341-347, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32263552

RESUMEN

We report three surfactants, with cationic N,N-di-(3-aminopropyl)-N-methylamine (DAPMA) head groups and aliphatic chains connected via an amide linkage, and investigate their ability to self-assemble and bind polyanionic heparin - a process of potential clinical importance in coagulation control. Modifying the hydrophobic chain length tunes the self-assembly event, with C16-DAPMA having the lowest critical micelle concentration and also being the optimal heparin binder. Remarkably highly structured hierarchical nanoscale aggregates are formed on binding between the spherical cationic micelles and linear polyanionic heparin. C14-DAPMA and C16-DAPMA yield organized polycrystalline assemblies as observed by transmission electron microscopy (TEM), predicted in solution by mesoscale simulations and characterized by small-angle X-ray scattering (SAXS). This confirms that the micelles remain intact during the hierarchical assembly process and become packed in a face-centered cubic manner. The nanoscale assembly formed by C16-DAPMA showed the highest degree of order. Importantly, these studies indicate the impact of hydrophobic modification on self-assembly and heparin binding, demonstrate remarkably high stability of these self-assembled micelles even when forming strong electrostatic interactions with heparin, and provide structural insights into nanoscale hierarchical electrostatic assemblies.

5.
Chem Sci ; 7(7): 4653-4659, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155113

RESUMEN

This paper reports that modifying the ligands in self-assembled multivalent (SAMul) displays has an impact on apparent binding selectivity towards two nanoscale biological polyanions - heparin and DNA. For the nanostructures assayed here, spermidine ligands are optimal for heparin binding but spermine ligands are preferred for DNA. Probing subtle differences in such nanoscale binding interfaces is a significant challenge, and as such, several experimental binding assays - competition assays and isothermal calorimetry - are employed to confirm differences in affinity and provide thermodynamic insights. Given the dynamic nature and hierarchical binding processes involved in SAMul systems, we employed multiscale modelling to propose reasons for the origins of polyanion selectivity differences. The modelling results, when expressed in thermodynamic terms and compared with the experimental data, suggest that DNA is a shape-persistent polyanion, and selectivity originates only from ligand preferences, whereas heparin is more flexible and adaptive, and as such, actively reinforces ligand preferences. As such, this study suggests that inherent differences between polyanions may underpin subtle binding selectivity differences, and that even simple electrostatic interfaces such as these can have a degree of tunability, which has implications for biological control and regulation on the nanoscale.

6.
Soft Matter ; 11(24): 4768-87, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26016799

RESUMEN

Dibenzylidene-D-sorbitol (DBS) has been a well-known low-molecular-weight gelator of organic solvents for over 100 years. As such, it constitutes a very early example of a supramolecular gel--a research field which has recently developed into one of intense interest. The ability of DBS to self-assemble into sample-spanning networks in numerous solvents is predicated upon its 'butterfly-like' structure, whereby the benzylidene groups constitute the 'wings' and the sorbitol backbone the 'body'--the two parts representing the molecular recognition motifs underpinning its gelation mechanism, with the nature of solvent playing a key role in controlling the precise assembly mode. This gelator has found widespread applications in areas as diverse as personal care products and polymer nucleation/clarification, and has considerable potential in applications such as dental composites, energy technology and liquid crystalline materials. Some derivatives of DBS have also been reported which offer the potential to expand the scope and range of applications of this family of gelators and endow the nansocale network with additional functionality. This review aims to explain current trends in DBS research, and provide insight into how by combining a long history of application, with modern methods of derivatisation and analysis, the future for this family of gelators is bright, with an increasing number of high-tech applications, from environmental remediation to tissue engineering, being within reach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA