Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 116: 111178, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806326

RESUMEN

OBJECTIVES: To synthesize and characterize brushite particles in the presence of acidic monomers (acrylic acid/AA, citric acid/CA, and methacryloyloxyethyl phosphate/MOEP) and evaluate the effect of these particles on degree of conversion (DC), flexural strength/modulus (FS/FM) and ion release of experimental composites. METHODS: Particles were synthesized by co-precipitation with monomers added to the phosphate precursor solution and characterized for monomer content, size and morphology. Composites containing 20 vol% brushite and 40 vol% reinforcing glass were tested for DC, FS and FM (after 24 h and 60 d in water), and 60-day ion release. Data were subjected to ANOVA/Tukey tests (DC) or Kruskal-Wallis/Dunn tests (FS and FM, alpha: 5%). RESULTS: The presence of acidic monomers affected particle morphology. Monomer content on the particles was low (0.1-1.4% by mass). Composites presented similar DC. For FS/24 h, only the composite containing DCPD_AA was statistically similar to the composite containing 60 vol% of reinforcing glass (without brushite, "control"). After 60 days, all brushite-containing materials showed similar FS, statistically lower than the control composite (p<0.01). Composites containing DCPD_AA, DCPD_MOEP or DCPD_U ("unmodified") showed statistically similar FM/24 h, higher than the control composite. After prolonged immersion, all composites were similar to the control composite, except DCPD_AA. Cumulative ion release ranged from 21 ppm to 28 ppm (calcium) and 9 ppm to 17 ppm (phosphate). Statistically significant reductions in ion release between 15 and 60 days were detected only for the composite containing DCPD_MOEP. SIGNIFICANCE: Acidic monomers added to the synthesis affected brushite particle morphology. After 60-day storage in water, composite strength was similar among all brushite-containing composites. Ion release was sustained for 60 days and it was not affected by particle morphology.


Asunto(s)
Fosfatos de Calcio , Resinas Compuestas , Materiales Dentales , Resistencia Flexional , Ensayo de Materiales , Metacrilatos , Docilidad
2.
J Mech Behav Biomed Mater ; 104: 103637, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32174395

RESUMEN

OBJECTIVES: To compare the effects of replacing reinforcing barium glass particles by DCPD (dicalcium phosphate dihydrate), as opposed to simply reducing glass filler content, on composite flexural properties and degree of conversion (DC). On a second set of experiments, composites with different "DCPD: glass" ratios were exposed to prolonged water immersion to verify if the presence of DCPD particles increased hydrolytic degradation. METHODS: Two series of composites were prepared: 1) composites with total inorganic content of 50 vol% and "DCPD: glass" ratios ranging from zero (glass only) to 1.0 (DCPD only), in 0.25 increments, and 2) composites containing only silanized glass (from zero to 50 vol%). Disk-shaped specimens were fractured under biaxial flexural loading after 24 h in water. Another set of specimens of composites with different "DCPD: glass" ratios was stored in water for 24 h, 30, 60, 90 and 120 days and tested in flexure. DC was determined using FTIR spectroscopy. Data were analyzed using Kruskal-Wallis/Dunn test (flexural properties) or ANOVA/Tukey test (DC, alpha: 0.05). RESULTS: For glass-only composites, reducing inorganic content caused a linear decrease in strength. The presence of DCPD did not affect composite strength up until a "DCPD: glass" ratio of 0.5. On the other hand, materials with 0.75 and 1.0 DCPD showed significantly lower strength than the glass-only composite with 12.5 vol% filler and the unfilled resin, respectively (p < 0.001). Except for the 0.25 DCPD composite, the presence of DCPD did not contribute to increase flexural modulus. After water storage, composites containing DCPD showed higher percent reductions in properties than the control, but only in a few cases the effect was statistically significant (strength: 0.5 DCPD, modulus: 0.25 and 1.0 DCPD). DC was only marginally affected by DCPD fraction. SIGNIFICANCE: For composites with "DCPD: glass" of 0.25 and 0.5, reductions in strength were related to the lower glass content, and not due to the presence of DCPD. Flexural modulus was primarily defined by glass content. Overall, composites containing DCPD particles presented higher reductions in properties after water storage, but it remained within limits reported for commercial materials.


Asunto(s)
Calcio , Resistencia Flexional , Resinas Compuestas , Vidrio , Ensayo de Materiales , Fosfatos , Docilidad , Propiedades de Superficie , Agua
3.
J Biomed Mater Res B Appl Biomater ; 107(3): 708-715, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30091514

RESUMEN

This study describes the synthesis of dicalcium phosphate dihydrate (DCPD) particles in the presence of different ethylene glycol dimethacrylates (EGDMA, ethylene glycol/EG units: 1, 2, 3 or 4) at two monomer-to-ammonium phosphate molar ratios (1:1 and 2:1), as a strategy to develop CaP-monomer particles with improved interaction with resin matrices. Particles displaying high surface areas and organic contents were added to a photocurable BisGMA-TEGDMA resin and the resulting materials were tested for degree of conversion (DC), biaxial flexural strength (BFS), flexural modulus, and ion release. Data were subjected to one-way ANOVA or Kruskal-Wallis/Dunn test (alpha: 0.05). Functionalization with EGDMA derivatives was dependent upon the length of the spacer group and monomer concentration in the synthesis. No differences in DC were observed among materials (p > 0.05). A 39% increase in BFS was obtained with the use of particles with the highest functionalization level compared to non-functionalized particles (p < 0.001). The use of functionalized DCPD reduced flexural modulus in comparison to non-functionalized particles (p < 0.001). Calcium release was similar among materials and remained constant during the experiment, while phosphate release was higher at 7 days in comparison to the remaining weeks (p < 0.001). In conclusion, diethylene glycol dimethacrylate resulted in the highest functionalization levels and the highest BFS among DCPD-containing materials. Ion release was not affected by functionalization. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 708-715, 2019.


Asunto(s)
Fosfatos de Calcio/química , Materiales Dentales/química , Ensayo de Materiales , Metacrilatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA