Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38790689

RESUMEN

Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria. This study aimed to evaluate the impact of sulforaphane (SFN) pre-exposure against cadmium chloride (CdCl2)-induced toxicity and mitochondrial alterations in the nematode Caenorhabditis elegans (C. elegans), by exploring the role of the insulin/insulin-like growth factor signaling pathway (IIS). The results revealed that prior exposure to SFN protected against CdCl2-induced mortality and increased lifespan, body length, and mobility while reducing lipofuscin levels. Furthermore, SFN prevented mitochondrial alterations by increasing mitochondrial membrane potential (Δψm) and restoring mitochondrial oxygen consumption rate, thereby decreasing mitochondrial reactive oxygen species (ROS) production. The improvement in mitochondrial function was associated with increased mitochondrial mass and the involvement of the daf-16 and skn-1c genes of the IIS signaling pathway. In conclusion, exposure to SFN before exposure to CdCl2 mitigates toxic effects and mitochondrial alterations, possibly by increasing mitochondrial mass, which may be related to the regulation of the IIS pathway. These discoveries open new possibilities for developing therapies to reduce the damage caused by Cd toxicity and oxidative stress in biological systems, highlighting antioxidants with mitochondrial action as promising tools.

2.
Am J Physiol Endocrinol Metab ; 327(1): E13-E26, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717362

RESUMEN

Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes (Ad). This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes than the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming the upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.NEW & NOTEWORTHY Obesity is associated with the development of chronic diseases like metabolic syndrome and type 2 diabetes, and adipose tissue plays a crucial role. In a rat model, our study reveals how an obesogenic environment primes adipocyte precursor cells, leading to epigenetic changes that affect inflammation, adipogenesis, and mitochondrial activity after differentiation. We highlight the importance of histone modifications, especially the trimethylation of histone H3 to lysine 4 (H3K4me3), showing its influence on adipocyte expression profiles.


Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo , Dieta Alta en Grasa , Epigénesis Genética , Histonas , Transcriptoma , Animales , Ratas , Adipocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Histonas/metabolismo , Masculino , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Diferenciación Celular/genética , Células Madre/metabolismo , Obesidad/metabolismo , Obesidad/genética , Reprogramación Celular/fisiología , Células Cultivadas , Ratas Wistar , Ratas Sprague-Dawley
3.
Epigenomes ; 6(3)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35997371

RESUMEN

Every cell of an organism shares the same genome; even so, each cellular lineage owns a different transcriptome and proteome. The Polycomb group proteins (PcG) are essential regulators of gene repression patterning during development and homeostasis. However, it is unknown how the repressive complexes, PRC1 and PRC2, identify their targets and elicit new Polycomb domains during cell differentiation. Classical recruitment models consider the pre-existence of repressive histone marks; still, de novo target binding overcomes the absence of both H3K27me3 and H2AK119ub. The CpG islands (CGIs), non-core proteins, and RNA molecules are involved in Polycomb recruitment. Nonetheless, it is unclear how de novo targets are identified depending on the physiological context and developmental stage and which are the leading players stabilizing Polycomb complexes at domain nucleation sites. Here, we examine the features of de novo sites and the accessory elements bridging its recruitment and discuss the first steps of Polycomb domain formation and transcriptional regulation, comprehended by the experimental reconstruction of the repressive domains through time-resolved genomic analyses in mammals.

4.
Vaccines (Basel) ; 10(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35632485

RESUMEN

Massive testing is a cornerstone in efforts to effectively track infections and stop COVID-19 transmission, including places with good vaccination coverage. However, SARS-CoV-2 testing by RT-qPCR requires specialized personnel, protection equipment, commercial kits, and dedicated facilities, which represent significant challenges for massive testing in resource-limited settings. It is therefore important to develop testing protocols that are inexpensive, fast, and sufficiently sensitive. Here, we optimized the composition of a buffer (PKTP), containing a protease, a detergent, and an RNase inhibitor, which is compatible with the RT-qPCR chemistry, allowing for direct SARS-CoV-2 detection from saliva without extracting RNA. PKTP is compatible with heat inactivation, reducing the biohazard risk of handling samples. We assessed the PKTP buffer performance in comparison to the RNA-extraction-based protocol of the US Centers for Disease Control and Prevention in saliva samples from 70 COVID-19 patients finding a good sensitivity (85.7% for the N1 and 87.1% for the N2 target) and correlations (R = 0.77, p < 0.001 for N1, and R = 0.78, p < 0.001 for N2). We also propose an auto-collection protocol for saliva samples and a multiplex reaction to minimize the PCR reaction number per patient and further reduce costs and processing time of several samples, while maintaining diagnostic standards in favor of massive testing.

5.
Sci Rep ; 7(1): 7450, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785058

RESUMEN

Cholesterol is an essential compound in mammalian cells because it is involved in a wide range of functions, including as a key component of membranes, precursor of important molecules such as hormones, bile acids and vitamin D. The cholesterol transport across the circulatory system is a well-known process in contrast to the intracellular cholesterol transport, which is poorly understood. Recently in our laboratory, we identified a novel protein in C. elegans involved in dietary cholesterol uptake, which we have named ChUP-1. Insillicoanalysis identified two putative orthologue candidate proteins in mammals. The proteins SIDT1 and SIDT2 share identity and conserved cholesterol binding (CRAC) domains with C. elegans ChUP-1. Both mammalian proteins are annotated as RNA transporters in databases. In the present study, we show evidence indicating that SIDT1 and SIDT2 not only do not transport RNA, but they are involved in cholesterol transport. Furthermore, we show that single point mutations directed to disrupt the CRAC domains of both proteins prevent FRET between SIDT1 and SIDT2 and the cholesterol analogue dehydroergosterol (DHE) and alter cholesterol transport.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Nucleótidos/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , Transporte Biológico , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Simulación por Computador , Ergosterol/análogos & derivados , Ergosterol/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/metabolismo , Mutación Puntual , Unión Proteica , ARN/metabolismo
6.
Biochimie ; 87(2): 205-14, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15760714

RESUMEN

Purified catalase-1 (CAT-1) from Neurospora crassa asexual spores is oxidized by singlet oxygen giving rise to active enzyme forms with different electrophoretic mobility. These enzyme forms are detected in vivo under stress conditions and during development at the start of the asexual morphogenetic transitions. CAT-1 heme b is oxidized to heme d by singlet oxygen. Here, we describe functional and structural comparisons of the non-oxidized enzyme with the fully oxidized one. Using a broad H(2)O(2) concentration range (0.01-3.0 M), non-hyperbolic saturation kinetics was found in both enzymes, indicating that kinetic complexity does not arise from heme oxidation. The kinetics was consistent with the existence of two kinds of active sites differing more than 10-times in substrate affinity. Positive cooperativity for one or both of the saturation curves is possible. Kinetic constants obtained at 22 degrees C varied slightly and apparent activation energies for the reaction of both components are not significantly different. Protein fluorescence and circular dicroism of the two enzymes were nearly identical, indicating no gross conformational change with oxidation. Increased sensitivity to inhibition by cyanide indicated a local change at the active site in the oxidized catalase. Oxidized catalase was less resistant to high temperatures, high guanidinium ion concentration, and digestion with subtilisin. It was also less stable than the non-oxidized enzyme at an acid pH. The overall data show that the oxidized enzyme is structurally different from the non-oxidized one, although it conserves most of the remarkable stability and catalytic efficiency of the non-oxidized enzyme. Because the enzyme in the cell can be oxidized under physiological conditions, preservation of functional and structural properties of catalase could have been selected through evolution to assure an active enzyme under oxidative stress conditions.


Asunto(s)
Catalasa/química , Neurospora crassa/enzimología , Oxígeno Singlete/química , Esporas Fúngicas/enzimología , Hemo/química , Oxidación-Reducción
7.
Virus Res ; 102(1): 75-84, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15068883

RESUMEN

We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.


Asunto(s)
Baculoviridae/genética , Regulación Viral de la Expresión Génica , Genes Virales , Interferencia de ARN , Proteínas Estructurales Virales/genética , Animales , Baculoviridae/fisiología , Línea Celular , Retículo Endoplásmico/química , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/genética , Spodoptera , Transfección
8.
J Biol Chem ; 278(21): 19317-24, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12646552

RESUMEN

Introduction of double-stranded RNA (dsRNA) into a wide variety of cells and organisms results in post-transcriptional depletion of the homologue endogenous mRNA. This well-preserved phenomenon known as RNA interference (RNAi) is present in evolutionarily diverse organisms such as plants, fungi, insects, metazoans, and mammals. Because the identification of the targeted mRNA by the RNAi machinery depends upon Watson-Crick base-pairing interactions, RNAi can be exquisitely specific. We took advantage of this powerful and flexible technique to demonstrate that selective silencing of genes essential for viral propagation prevents in vitro and in vivo viral infection. Using the baculovirus Autographa californica, a rapidly replicating and highly cytolytic double-stranded DNA virus that infects many different insect species, we show for the first time that introduction of dsRNA from gp64 and ie1, two genes essential for baculovirus propagation, results in prevention of viral infection in vitro and in vivo. This is the first report demonstrating the use of RNAi to inhibit a viral infection in animals. This inhibition was specific, because dsRNA from the polyhedrin promoter (used as control) or unrelated dsRNAs did not affect the time course of viral infection. The most relevant consequences from the present study are: 1) RNAi offers a rapid and efficient way to interfere with viral genes to assess the role of specific proteins in viral function and 2) using RNAi to interfere with viral genes essential for cell infection may provide a powerful therapeutic tool for the treatment of viral infections.


Asunto(s)
Baculoviridae/genética , Proteínas de Unión al ADN , Interferencia de ARN , ARN Bicatenario/genética , Transfección , Virosis/prevención & control , Animales , Línea Celular , Escarabajos/virología , Citometría de Flujo , Expresión Génica , Genes Virales/genética , Proteínas Fluorescentes Verdes , Proteínas Inmediatas-Precoces/genética , Larva/virología , Proteínas Luminiscentes/genética , Microscopía Confocal , Microscopía Electrónica , ARN Bicatenario/administración & dosificación , Proteínas Recombinantes de Fusión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Spodoptera/metabolismo , Transactivadores/genética , Proteínas Virales de Fusión/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA