RESUMEN
Swine manure has a high load of pathogens, which can pose a risk to human and environmental health. In Brazil, studies evaluating the survival of pathogens in soil are scarce. Therefore, this study aimed to evaluate the survival, percolation, and leaching of enterobacteria in clayey soil after fertilization with swine manure. For this purpose, soil columns were fertilized with manure spiked with enterobacteria. The microorganisms' behavior was monitored in terms of survival, percolation, and leaching with and without rain. Soil samples were collected, and Escherichia coli and Salmonella enterica serovar Senftemberg were quantified. The results indicated that E. coli survived for a longer period (43 days) than S. senftemberg (14 days). E. coli percolated quickly through the soil, leaching 60 cm in less than 5 min during rainy events and remaining viable for up to 24 h after the rain. The results show the importance of treating manure effectively before being added to the soil. An efficient treatment could be anaerobic digestion, followed by a pond system. Considering the characteristics of swine-producing regions, the load of effluents applied to the soil may percolate, leach, or run off and consequently contaminate water bodies with pathogens.
Asunto(s)
Salmonella enterica , Suelo , Humanos , Animales , Porcinos , Estiércol/microbiología , Escherichia coli , Enterobacteriaceae , Microbiología del SueloRESUMEN
Certain members of the Coronaviridae family have emerged as zoonotic agents and have recently caused severe respiratory diseases in humans and animals, such as SARS, MERS, and, more recently, COVID-19. Antivirals (drugs and antiseptics) capable of controlling viruses at the site of infection are scarce. Microalgae from the Chlorellaceae family are sources of bioactive compounds with antioxidant, antiviral, and antitumor activity. In the present study, we aimed to evaluate various extracts from Planktochlorella nurekis in vitro against murine coronavirus-3 (MHV-3), which is an essential human coronavirus surrogate for laboratory assays. Methanol, hexane, and dichloromethane extracts of P. nurekis were tested in cells infected with MHV-3, and characterized by UV-vis spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy, ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), and the application of chemometrics through principal component analysis (PCA). All the extracts were highly efficient against MHV-3 (more than a 6 Log unit reduction), regardless of the solvent used or the concentration of the extract, but the dichloromethane extract was the most effective. Chemical characterization by spectrophotometry and NMR, with the aid of statistical analysis, showed that polyphenols, carbohydrates, and isoprene derivatives, such as terpenes and carotenoids have a more significant impact on the virucidal potential. Compounds identified by UPLC-MS were mainly lipids and only found in the dichloromethane extract. These results open new biotechnological possibilities to explore the biomass of P. nurekis; it is a natural extract and shows low cytotoxicity and an excellent antiviral effect, with low production costs, highlighting a promising potential for development and implementation of therapies against coronaviruses, such as SARS-CoV-2.
Asunto(s)
COVID-19 , Virus de la Hepatitis Murina , Animales , Ratones , Humanos , SARS-CoV-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
In many countries, the adverse impact of agriculture on water sources has been discussed with more attention recently by the water footprint estimation. Brazil is the second largest animal protein' exporter, and this demand has a tendency to increase significantly until 2050, and in this context the water management will be crucial. Thus, the present study aimed to evaluate the water footprint and productivity in the broiler and swine slaughtered in Brazil from 2008 to 2018. The results showed that the herds of broiler and swine were concentrated in three main regions: Midwest, Southeast and South, representing 97.1% of the broilers and 99.7% of the swine slaughtered in Brazil. During the studied decade, the slaughter of broiler and swine increased 9.1 and 25.8%, respectively. The broiler and swine water footprint decreased by 15.4 and 3.5%, respectively. The average volume of water needed for the production of broiler and swine meat was 2533 L kg-1 and 3754 L kg-1, respectively. The average water productivity per kg of broiler meat was 0.397 kg m-3, while for swine it was 0.269 kg m-3. The average water productivity for soybean was 0.497 kg m-3, and for corn it was 1.18 kg m-3. The decrease in the water footprint is a result of the improvement of management practices, highlighting that it is necessary to improve the knowledge about the use of the water footprint methodology as a tool for water management to help public policies.
Asunto(s)
Pollos , Agua , Agricultura , Animales , Brasil , Carne , PorcinosRESUMEN
Phycoremediation of swine wastewater is a promising treatment since it efficiently removes nutrients and contaminants and, simultaneously, its biomass can be harvested and used to obtain a wide range of valuable compounds and metabolites. In this context, biomass microalgae were investigated for the phycoremediation of swine wastewater, and biomass extracts for its virucidal effect against enveloped and non-enveloped viruses. Microalgae were cultivated in a pilot scale bioreactor fed with swine wastewater as the growth substrate. Hexane, dichloromethane, and methanol were used to obtain the microalgae extracts. Extracts were tested for virucidal potential against HSV-1 and HAdV-5. Virucidal assays were conducted at temperatures that emulate environmental conditions (21 °C) and body temperature (37 °C). The maximum production of microalgae biomass reached a concentration of 318.5 ± 23.6 mgDW L-1. The results showed that phycoremediation removed 100% of ammonia-N and phosphate-P, with rates (k1) of 0.218 ± 0.013 and 0.501 ± 0.038 (day-1), respectively. All microalgae extract reduced 100% of the infectious capacity of HSV-1. The microalgae extracts with dichloromethane and methanol showed inhibition activities at the lowest concentration (3.125 µg mL-1). Virucidal assays against HAdV-5 using microalgae extract of hexane and methanol inhibited the infectious capacity of the virus by 70% at all concentrations tested at 37 °C. At a concentration of 12.5 µg mL-1, the dichloromethane microalgae extract reduced 50-80% of the infectious capacity of HAdV-5, also at 37 °C. Overall, the results suggest that the microalgae can be an attractive source of feedstock biomass for the exploration of alternative virucidal compounds.
Asunto(s)
Chlorella , Microalgas , Animales , Biomasa , Hexanos , Metanol/metabolismo , Cloruro de Metileno , Microalgas/metabolismo , Nitrógeno/análisis , Extractos Vegetales/metabolismo , Porcinos , Aguas ResidualesRESUMEN
Bacteriophages are bacterial-specific viruses and the most abundant biological form on Earth. Each bacterial species possesses one or multiple bacteriophages and the specificity of infection makes them a promising alternative for bacterial control and environmental safety, as a biotechnological tool against pathogenic bacteria, including those resistant to antibiotics. This application can be either directly into foods and food-related environments as biocontrol agents of biofilm formation. In addition, bacteriophages are used for microbial source-tracking and as fecal indicators. The present review will focus on the uses of bacteriophages like bacterial control tools, environmental safety indicators as well as on their contribution to bacterial control in human, animal, and environmental health.
RESUMEN
We report the use of bacteriophages for control of Salmonella Enteritidis in poultry production. Phage was isolated by the double-agar plate assay from agricultural waste samples, and one isolate, named SM1, was selected and propagated for application in poultry litter. Two experimental protocols were tested: single treatment and repeated treatment (re-application of phage SM1 after 6 h and 12 h). Each treatment cycle involved 25 g of poultry litter placed in plastic boxes and contaminated with 105 Colony Forming Units mL-1 (CFU mL-1) of S. Enteritidis, in independent duplicates. The contaminated litter was treated with 106 Plaque Forming Units mL-1 (PFU mL-1) of SM1 phage by dripping. Repeated application of phage SM1 reduced Salmonella counts by over 99.9%; the phage persisted in poultry litter for over 35 days. This study illustrates the application of SM1 treatment as a promising technology for bacterial control in production matrices that could allow safe and sustainable use of agricultural waste products as biofertilizers.
Asunto(s)
Bacteriófagos , Fagos de Salmonella , Animales , Estiércol , Aves de Corral , Salmonella enteritidis , PorcinosRESUMEN
The present study reports the monitoring of viruses indicating fecal contamination in two distinct regions affected by poor management of wastewater located above the Guarani Aquifer, which is one of the biggest freshwater reservoirs in the world. In the city of Três Lagoas (located in the Midwest region, in the state of Mato Grosso do Sul), water samples were collected from Lagoa Maior, a lake used for recreation, and in Concórdia (located in the South region, in the state of Santa Catarina), from the Queimados River, which crosses the urban area. Four sampling sites were monitored from March to July 2018 in Lagoa Maior, and four sampling sites were monitored along the urban part of the Queimados River area over two periods (rainy and dry). Water samples were analyzed by concentration of Human adenovirus (HAdV), Norovirus (NoV), Rotavirus A (RAV), and Hepatitis A virus (HAV) for the Lagoa Maior samples and RVA, HAV, and Porcine circovirus 2 (PCV2) for the Queimados River samples. All sampling sites presented enteric viruses, demonstrating fecal input and potential contamination of groundwater. Results highlight the need for wastewater management to improve environmental health quality.
Asunto(s)
Enterovirus , Agua Subterránea , Virus de la Hepatitis A , Animales , Brasil , Ecosistema , Monitoreo del Ambiente , Humanos , Porcinos , Microbiología del AguaRESUMEN
Hepatitis E virus (HEV) is an important enteric agent that can circulate in swine; it is excreted in manure, and of zoonotic interest. The present study investigated, by RT-qPCR, the circulation of HEV in swine manure from different types of pig farms (maternity, nursery, and grow-finish farms) in Santa Catarina State, the major pig production area of Brazil, and also evaluated the HEV removal efficiency of psychrophilic anaerobic biodigesters (PABs). While HEV was consistently detected in manure from grow-finish pig farms (>4 log HEV genome copies (GC) L-1), the virus was not detected in manure from maternity and nursery farms. These findings suggest a potential high biosafety status during primary-swine production, with a subsequent contamination in grow-finish production. The anaerobic biodigestion process reduced more than 2 log10 HEV GC in the processed swine manure. However, the virus concentration in final effluent remained high, with an average value of 3.85 log10 HEV GC L-1. Consequently, our results demonstrate that PABs can be a robust tool for effective inactivation of HEV, while reinforcing the need for sanitary surveillance and legislation of swine manure-derived biofertilizers, to avoid the spread of zoonotic enteric pathogens such as HEV.
RESUMEN
Emerging contaminants (ECs) include endocrine-disrupting compounds, pharmaceuticals (lipid regulators, antibiotics, diuretics, non-steroid anti-inflammatory drugs, stimulant drugs, antiseptics, analgesic, beta blockers), detergents, disinfectants, and personal care products. The residues from these compounds have become a concerning because of their bioactive presence on environmental matrices, especially water bodies. The development of technologies, aiming the secure and efficient removal of these compounds from the environment or event to remove them before they achieve the environment, is necessary. In these context, the present review is about promising eco-friendly, low-cost and specially applied, including biological processes using microalgae, bacteria, enzymes produced by fungi, and adsorbent materials such as those recycled from other processes waste. The processes where revised considering the removal mechanism and the efficiency rate.
Asunto(s)
Biodegradación Ambiental , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Adsorción , Bacterias , Hongos , Microalgas , Purificación del Agua/métodosRESUMEN
The present study evaluated anaerobic co-digestion of swine manure and swine carcasses for biogas yield and inactivation/behaviour of pathogens purpose. Biochemical Methane Production tests were performed with samples containing ratios of 3, 7.5 and 15 kgcarcassâ m-3 manure. For pathogens inactivation experiments known amounts of model microrganisms (sensitive and resistant) were artificially inoculated in anaerobic reactors at 24°C and 37°C. The addition of carcass resulted in an increase until 119% of biogas yield compared to swine manure mono-digestion. Salmonella enterica, Escherichia coli and PCV2 were reduced >3log10 (24°C or 37°C) during 30 days. At 37°C, MS2 and PhiX-174 were reduced 3log10 and 1.8log10, respectively. At 24°C, MS2 reduced 1.5 log10 and PhiX-174 did not present any decay over 30 days. Considering the most resistant biomarkers pathogens, as bacteriophage, we recommend the swine carcasses pre-treatment, such as high temperatures, for sanitary security.
Asunto(s)
Biocombustibles , Estiércol , Anaerobiosis , Animales , Reactores Biológicos , Escherichia coli , Metano , PorcinosRESUMEN
In the present study, we evaluated the degree of contamination of fresh vegetables, cheeses and jellies from disaster area in Brazil with bacteria and enteric viruses. Food samples (n = 350) were tested for Escherichia coli, Salmonella spp., Listeria monocytogenes, Staphylococcus spp., and enteric viruses (rotavirus A (RVA), human adenovirus (HAdV), hepatitis A virus (HAV), and human norovirus (HNoV). E. coli was present in 56% of the samples, Salmonella spp. was present in 14% of the samples, L. monocytogenes and Staphylococcus spp. (coagulase-positive) were present in 36% of the samples. The enteric viruses RVA and HAdV were detected in cheeses and vegetables.
Asunto(s)
Queso/microbiología , Contaminación de Alimentos/análisis , Verduras/microbiología , Adenovirus Humanos/aislamiento & purificación , Brasil , Escherichia coli/aislamiento & purificación , Granjas , Virus de la Hepatitis A/aislamiento & purificación , Humanos , Listeria monocytogenes/aislamiento & purificación , Norovirus/aislamiento & purificación , Rotavirus/aislamiento & purificación , Salmonella/aislamiento & purificación , Staphylococcus/aislamiento & purificaciónRESUMEN
The present study evaluated the river water quality improvement by implementation of household-based biodigesters in vulnerability and poverty rural area, in Minas Gerais State-Brazil. For that, 78 household-based biodigesters were installed for domestic wastewater treatment. Wastewater was collected before and after treatment and the physicochemical parameters and pathogens removal (human adenovirus (HAdV), hepatitis A (HAV) virus, Salmonella sp. and Escherichia coli) were evaluated; Additionally, river water was sampled before and after the household-based biodigesters implementation, to verify the contamination reduction and the positive impact of domestic wastewater treatment on waterborne pathogen reduction, considering HAdV, HAV, Salmonella sp. and E. coli quantification. The applicability in real-scale of decentralized treatment systems using household-based biodigesters promoted reduction of 90, 99, 99.99 and 99.999% from HAV, Salmonella sp., E. coli and HAdV from domestic wastewater, respectively; The river water quality improvement before the wastewater treatment application was highlight in the present study, considering that the reduction of waterborne pathogens in this water in 90, 99.99 and 99.999% of E. coli, HAV and HAdV, respectively (Salmonella sp. was not detected in river water). In general, this is an important study for encouraging the decentralized sanitation in vulnerable and poverty area, as well in rural sites, considering the positive impact of this implementation on public health.
Asunto(s)
Adenovirus Humanos/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Virus de la Hepatitis A/aislamiento & purificación , Salmonella/aislamiento & purificación , Aguas Residuales/microbiología , Purificación del Agua/métodos , Biodegradación Ambiental , Brasil , Humanos , Pobreza , Áreas de Pobreza , Ríos/microbiología , Población Rural , SaneamientoRESUMEN
Although the effects of heavy metals on the behavior, including infectivity, of bacteria have been studied, little information is available about their effects on enteric viruses. We report an investigation of effects on the biosynthesis of human adenoviruses (HAdV) and hepatitis A (HAV) of waters contaminated with mineral waste following an environmental disaster in Mariana City, Minas Gerais State, Brazil. The study area was affected on November 5, 2015, by 60 million m3 of mud (containing very high concentrations of iron salts) from a mining reservoir (Fundão), reaching the Gualaxo do Norte River (sites evaluated in this study), the "Rio Doce" River and finally the Atlantic Ocean. We found substantial counts of infectious HAdV and HAV (by qPCR) in all sampled sites from Gualaxo do Norte River, indicating poor basic sanitation in this area. The effects of iron on viral infection processes were evaluated using HAdV-2 and HAV-175, as DNA and RNA enteric virus models, respectively, propagated in the laboratory and exposed to this contaminated water. Experiments in field and laboratory scales found that the numbers of plaque forming units (PFU) of HAdV and HAV were significantly higher in contaminated water with high iron concentrations than in waters with low iron concentration (< 20 µg/L of iron). These findings indicate that iron can potentiate enteric virus infectivity, posing a potential risk to human and animal health, particularly during pollution disasters such as that described here in Mariana, Brazil.
Asunto(s)
Adenovirus Humanos/crecimiento & desarrollo , Virus de la Hepatitis A/crecimiento & desarrollo , Hierro/análisis , Minerales/análisis , Ríos/virología , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Adenovirus Humanos/aislamiento & purificación , Adenovirus Humanos/metabolismo , Brasil , Enterovirus/genética , Enterovirus/crecimiento & desarrollo , Enterovirus/aislamiento & purificación , Enterovirus/metabolismo , Monitoreo del Ambiente , Hepatitis A/virología , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/aislamiento & purificación , Virus de la Hepatitis A/metabolismo , Humanos , Hierro/metabolismo , Minería , Ríos/química , Contaminación del AguaRESUMEN
The present study describes the behavior of spatio-temporal variation of parameters and microbial profile of a pilot stabilization ponds system, consisted of three serial ponds, for the treatment of landfill leachate. Bacterial diversity was determined through molecular techniques (FISH, PCR and phylogenic analysis), while the phytoplankton community was evaluated through optical microscopy and quantified by the Sedgewick-Rafter chamber. Physicochemical parameters were also evaluated. The ponds system presented the following removal efficiency: 56% for TCOD; 83% for SBOD5 and 82% for N-NH4(+). Moreover, the analysis of chlorophyll a and DO showed stratification in the mass of water by the vertical profile. The analysis of the phytoplankton community showed a low number of species, with a predominance of Chlamydomonas sp. and presence of Cryptomonas sp. in lower density. The bacterial diversity analysis showed the presence of Planctomycetales, Verrucomicrobiales, some Desulfovibionaceae sulfate-reducing bacteria and Pseudomonas sp.
Asunto(s)
Fitoplancton , Estanques/microbiología , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Amoníaco , Biodiversidad , Brasil , Chlamydomonas/genética , Criptófitas/genética , Criptófitas/aislamiento & purificación , ADN Ribosómico , Hibridación Fluorescente in Situ , Nitrógeno/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa , Estanques/química , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Análisis Espacio-TemporalRESUMEN
The increase in antibiotic resistance due to multiple factors has encouraged the search for new compounds which are active against multidrug-resistant pathogens. In this context, chalcones, dihydrochalcones, hydrazones and oxadiazoles were tested against Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus (MRSA) isolates, which were obtained from clinical laboratories and were characterized as MRSA using traditional and molecular methods. Among 65 tested compounds, two chalcones, one dihydrochalcone and two hydrazones were active against MRSA. Based on the minimal inhibitory concentration and cytotoxicity, hydrazones provided a better selectivity index than chalcones. Active hydrazones are promising antibiotic-like substances and they should be the subject of further microbiological studies.
Asunto(s)
Antibacterianos/farmacología , Chalconas/farmacología , Hidrazonas/farmacología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Meticilina/farmacología , Oxadiazoles/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/metabolismo , Animales , Chalconas/química , Chlorocebus aethiops , Humanos , Hidrazonas/química , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Infecciones Estafilocócicas/microbiología , Células VeroRESUMEN
The present study aimed to describe the bacterial community present at an anaerobic up flow bioreactor with ANAMMOX activity, inoculated with the sludge from the anaerobic pond of a swine slurry treatment system. The description was based on the molecular DNA techniques using primers for amplification of complete 16S rRNA gene and also new primers to amplify smaller fragments from 16S rRNA. During the bioreactor operation time, the bacterial community changed significantly, increasing the nitrogen removal efficiency, reaching after 500 days a removal rate of 94 percent. The complete PCR amplification of 16S rRNA gene generated 17 clones, where three presented similarity with Candidatus Jettenia asiatica (97 percent), twelve with Janthinobacterium (99 percent) and two with uncultured clones. The PCR amplification of 436 base pairs had generated 12 clones, of which eight presented 96-100 percent similarity with Candidatus Anammoxoglobus propionicus, Planctomycete KSU-1 and one with Pseudomonas sp. (99 percent) and three with uncultured clones.
RESUMEN
In the present study whole genome of six Brazilian isolates of PCV2 were sequenced, analyzed and compared with 35 other sequences (24 from other countries and 17 from Brazil). The phylogenetic analysis showed that mostly Brazilian variants of PCV2 were grouped as PCV2-1. Two isolates among the six analyzed here could not be grouped with any other PCV2-2 analyzed in this study. One of these isolates was from an aborted fetus with myocarditis and the other from a PMWS affected pig. The results pointed here showed that both groups of PCV2 are present in Brazilian pig population without any clear geographical correlation.