Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 38(24): 5434-7, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24343010

RESUMEN

Heterogeneously integrated III-V-on-silicon second-order distributed feedback lasers utilizing an ultra-thin DVS-BCB die-to-wafer bonding process are reported. A novel DFB laser design exploiting high confinement in the active waveguide is demonstrated. A 14 mW single-facet output power coupled to a silicon waveguide, 50 dB side-mode suppression ratio and continuous wave operation up to 60°C around 1550 nm is obtained.

2.
Opt Express ; 21(16): 19339-52, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23938850

RESUMEN

We demonstrate unidirectional bistability in microdisk lasers electrically pumped and heterogeneously integrated on SOI. The lasers operate in continuous wave regime at room temperature and are single mode. Integrating a passive distributed Bragg reflector (DBR) on the waveguide to which the microdisk is coupled feeds laser emission back into the laser cavity. This introduces an extra unidirectional gain and results in unidirectional emission of the laser, as demonstrated in simulations as well as in experiment.

3.
Opt Express ; 21(11): 13675-83, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736620

RESUMEN

Compact multi-frequency lasers are realized by combining III-V based optical amplifiers with silicon waveguide optical demultiplexers using a heterogeneous integration process based on adhesive wafer bonding. Both devices using arrayed waveguide grating routers as well as devices using ring resonators as the demultiplexer showed lasing with threshold currents between 30 and 40 mA and output powers in the order of a few mW. Laser operation up to 60°C is demonstrated. The small bending radius allowable for the silicon waveguides results in a short cavity length, ensuring stable lasing in a single longitudinal mode, even with relaxed values for the intra-cavity filter bandwidths.

4.
Opt Express ; 15(11): 6744-9, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19546984

RESUMEN

A compact, electrically driven light source integrated on silicon is a key component for large-scale integration of electronic and photonic integrated circuits. Here we demonstrate electrically injected continuous-wave lasing in InP-based microdisk lasers coupled to a sub-micron silicon wire waveguide, fabricated through heterogeneous integration of InP on silicon-on-insulator (SOI). The InP-based microdisk has a diameter of 7.5 mum and a thickness of 1 mum. A tunnel junction was incorporated to efficiently contact the p-side of the pn-junction. The laser emits at 1.6 mum, with a threshold current as low as 0.5 mA under continuous-wave operation at room temperature, and a threshold voltage of 1.65 V. The SOI-coupled laser slope efficiency was estimated to be 30 muW/mA, with a maximum unidirectional output power of 10 muW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA