Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Sports Med ; 51(6): 1608-1614, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37067847

RESUMEN

BACKGROUND: Baseball pitching injuries are on the rise. Inertial measurement units (IMUs) provide immediate feedback to players and coaches, allowing for collection outside of the traditional laboratory setting with real-world application. The 4D Motion system provides kinematics throughout the pitching motion and may be beneficial for individualized programs in the throwing athlete. A systematic analysis of these sensors has not been completed. PURPOSE: To evaluate the validity of the 4D Motion IMU system for analyzing the baseball pitching motion compared with marker-based motion capture, and evaluate the internal reliability and consistency of the device. STUDY DESIGN: Controlled laboratory study. METHODS: Ten high school pitchers participated in this study (10 male; 9 right-hand dominant; mean age, 16.6 ± 1.3 years; mean body mass index, 24.1 ± 3.9). Participants were simultaneously outfitted with six 4D Motion IMU sensors and retroreflective markers. The pitchers threw fastballs at maximum effort off a mound at the standard height and distance. A comparison was made between the IMUs and corresponding motion capture values for shoulder external rotation, elbow flexion, chest extension, pelvis and chest rotation velocity, and rotation acceleration. RESULTS: Significant differences were found for 5 of 7 metrics analyzed. The IMU overreported most metrics, except for elbow flexion and pelvis rotation angular acceleration, where both positive and negative errors were observed. The root mean square error and percentage errors indicated smaller discrepancies for chest extension (4°± 5°) and pelvis (38 ± 19 deg/s) and chest (96 ± 42 deg/s) rotation velocity, with elbow flexion having the largest variance (21°± 9°). CONCLUSION: The values of the 4D Motion IMU system should not be considered equivalent when compared with marker-based motion capture studies. The system lacked internal consistency and reliability, with angular velocities being the most consistent. Caution should be used when using the metrics provided by an IMU-based system for individualized monitoring. CLINICAL RELEVANCE: If found valid and reliable, IMUs could be used for longitudinal workload monitoring, individualized throwing and rehabilitation programs, and ultimately injury prevention. This study demonstrates that the data obtained from a 4D Motion system using Gen 3 sensors are not equivalent to the data obtained from a marker-based motion capture system.


Asunto(s)
Béisbol , Articulación del Codo , Articulación del Hombro , Humanos , Masculino , Adolescente , Béisbol/lesiones , Reproducibilidad de los Resultados , Hombro , Codo , Captura de Movimiento , Tomografía Computarizada Cuatridimensional
2.
Am J Sports Med ; 51(3): 779-785, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625428

RESUMEN

BACKGROUND: Baseball pitchers often participate in throwing programs that involve throwing at reduced effort levels to gradually increase the amount of stress experienced across the elbow. It is currently unknown how reduced effort pitching compares with maximum effort with respect to elbow stress and ball velocity. PURPOSE/HYPOTHESIS: The purpose was to determine the correlation between elbow stress and ball velocity with reduced effort pitching. We hypothesized that decreased perceived effort would disproportionately correlate with elbow stress and ball velocity. STUDY DESIGN: Descriptive laboratory study. METHODS: Ten healthy male high school baseball pitchers threw 5 pitches from a regulation pitching mound at 3 effort levels: maximum effort, 75% effort, and 50% effort. Elbow stress, specifically elbow varus torque, was calculated for all pitches using a validated marker-based 3-dimensional motion capture system. Ball velocity was measured using a Doppler radar gun. Intrathrower variability was calculated for each effort level. RESULTS: Elbow stress and ball velocity decreased with reduced effort throws (P < .001 and P = .003, respectively). However, the reductions in elbow stress and ball velocity were not proportional. At 75% effort throws, elbow stress measured 81% (intraclass correlation coefficient [ICC], 0.95), and ball velocity measured 90% (ICC, 0.80) of maximum, respectively. At 50% effort throws, elbow stress measured 75% (ICC, 0.93), and ball velocity measured 85% (ICC, 0.87) of maximum. Intrathrower reliability was excellent for elbow stress and ball velocity, with all ICCs ≥0.80. CONCLUSION: Pitching at a reduced effort level resulted in decreased elbow stress and ball velocity. However, for every 25% reduction in perceived effort, elbow stress decreased by a mean 13%, and ball velocity decreased 7.5%. When baseball pitchers attempt to throw at a reduced effort of maximum, throwing metrics do not decrease proportionately. CLINICAL RELEVANCE: While pitching at a reduced effort of maximum decreases elbow stress and ball velocity, the decrease is not proportional, subjecting the elbow to more stress than intended. This has significant clinical importance to pitchers, coaches, and medical professionals in the setting of injury prevention and return to sports.


Asunto(s)
Béisbol , Articulación del Codo , Masculino , Humanos , Codo/fisiología , Captura de Movimiento , Reproducibilidad de los Resultados , Fenómenos Biomecánicos/fisiología , Rotación , Articulación del Codo/fisiología , Béisbol/lesiones
3.
Curr Rev Musculoskelet Med ; 14(1): 88-94, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33403626

RESUMEN

PURPOSE OF REVIEW: Weighted baseball throwing programs have gained significant attention recently. They have been promoted as proven option for pitchers wishing to increase their throwing velocity and improve throwing mechanics. However, there is some concern that, if not applied properly, they may increase injury risk. In this review, we aim to (1) give a brief description of the potential mechanisms through with weighed ball programs that could improve throwing velocity, (2) summarize the available evidence regarding their effectiveness in increasing throwing velocity, (3) summarize the evidence on injury risk, and (4) propose directions for future studies. RECENT FINDINGS: Initial research on weighted ball programs was published in the 1960s. Recently there has been an increase in research as interest from baseball organizations, instructors, players, and medical providers has grown. A recent randomized controlled trial demonstrated that pitching velocity can be increased through a 6-week weighted ball program; however, with that, they found that the rate of injury also increased. An earlier systematic review outlined 10 studies that evaluated weighted ball programs effect on pitching velocity and reported that 7 studies described increases in throwing velocity, while most studies did not comment on injury risk. They note that the results on rate of injury have been variable, likely secondary to the variability in time and intensity of different programs. The inconsistency in the methodology of weighted ball programs and studies has made it challenging to draw (scientifically) meaningful conclusions. Nevertheless, several studies have offered empirical evidence in support of the claim that weighted ball programs can increase pitching velocity through improved throwing mechanics. At the same time, these studies have emphasized the improvements in performance, while the potential effects on injury mechanisms have been less well understood. There is a need for improved standardization of these programs to allow for future study and subsequent modification to optimize performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA