Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 3(1): 52-85, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-25371332

RESUMEN

Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

2.
Environ Technol ; 31(8-9): 993-1003, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20662387

RESUMEN

Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are promising is this respect. In addition to the high polysaccharide-hydrolysing capacities of many of these organisms, an important advantage is their ability to use most of the reducing equivalents (e.g. NADH, reduced ferredoxin) formed during glycolysis for the production of hydrogen, enabling H2/hexose ratios of between 3.0 and 4.0. So, despite the fact that the hydrogen-yielding reactions, especially the one from NADH, are thermodynamically unfavourable, high hydrogen yields are obtained. In this review we focus on three different mechanisms that are employed by a few model organisms, viz. Caldicellulosiruptor saccharolyticus and Thermoanaerobacter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, to efficiently produce hydrogen. In addition, recent developments to improve hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea are discussed.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Biomasa , Hidrógeno/metabolismo , Microbiología Industrial/métodos , Oxidación-Reducción , Termodinámica
3.
Appl Environ Microbiol ; 75(24): 7718-24, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19820143

RESUMEN

Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.


Asunto(s)
Transporte Biológico , Metabolismo de los Hidratos de Carbono , Bacterias Grampositivas/crecimiento & desarrollo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Biocombustibles , Perfilación de la Expresión Génica , Genes Bacterianos , Bacterias Grampositivas/genética , Lignina/metabolismo , Monosacáridos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
Appl Environ Microbiol ; 74(21): 6720-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18776029

RESUMEN

Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO(2), and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Bacterias Grampositivas/genética , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono/genética , Enzimas/genética , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA