Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 30(13): 3832-44, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24621316

RESUMEN

Self-assembled monolayers (SAMs) from an 11-cyanoundecyltrichlorosilane (CN-SAM) precursor were deposited on porous SiCOH low-k dielectrics with three different pore radii, namely, 1.7, 0.7, and lower than 0.5 nm. The low-k dielectrics were first pretreated with either O2 or He/H2 plasma in order to generate silanol groups on the hydrophobic pristine surface. Subsequently, the SAMs were chemically grafted to the silanol groups on the low-k surface. The SAMs distribution in the low-k films depends on the pore diameter: if the pore diameter is smaller than the size of the SAMs precursors, the SAM molecules are confined to the surface, while if the pore diameter exceeds the van der Waals radius of the SAMs precursor, the SAMs molecules reach deeper in the dielectric. In the latter case, when the pore sidewalls are made hydrophilic by the plasma treatment, the chemical grafting of the SAM precursors follows the profile of the generated silanol groups. The modification depth induced by the O2 plasma is governed by the diffusion of the oxygen radicals into the pores, which makes it the preferred choice for microporous materials. On the other hand, the vacuum ultraviolet (VUV) light plays a critical role, which makes it more suitable for hydrolyzing mesoporous materials. In addition to the density of the surface -OH groups, the nanoscale concave curvature associated with the pores also affects the molecular packing density and ordering with respect to the self-assembly behavior on flat surfaces. A simple model which correlates the low-k pore structure with the plasma hydrophilization mechanism and the SAMs distribution in the pores is presented.

2.
Langmuir ; 29(39): 12284-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24000800

RESUMEN

This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially. In a next step, in situ X-ray fluorescence (XRF), ellipsometric porosimetry (EP), and Rutherford backscattering spectroscopy (RBS) were used to characterize ALD growth of TiO2 on these substrates. The initial growth of TiO2 was found to be inhibited in the original low-k film containing only Si-CH3 surface groups, while immediate growth was observed in the hydrophilic O2 plasma treated film. The latter film was uniformly filled with TiO2 after 8 ALD cycles, while pore filling was delayed to 17 ALD cycles in the hydrophobic film. For the He/H2 plasma treated film, containing both Si-OH and Si-CH3 groups, the in situ XRF data showed that TiO2 could no longer be deposited in the He/H2 plasma treated film after 8 ALD cycles, while EP measurements revealed a remaining porosity. This can be explained by the faster deposition of TiO2 in the hydrophilic top part of the film than in the hydrophobic bulk which leaves the bulk porous, as confirmed by RBS depth profiling. The outcome of this research is not only of interest for the development of advanced interconnects in ULSI technology, but also demonstrates that ALD combined with RBS analysis is a handy approach to analyze the modifications induced by a plasma treatment on a nanoporous thin film.

3.
Langmuir ; 29(38): 12025-35, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24032751

RESUMEN

The impact of pore structure of nanoporous films on the measured elastic modulus is demonstrated for silica-based nanoporous low-k films that are fabricated using an alternative manufacturing sequence which allows a separate control of porosity and matrix properties. For this purpose, different experimental techniques for measuring the elastic properties were compared, including nanoindentation, laser-induced surface acoustic wave spectroscopy (LAwave), and ellipsometric porosimetry (EP). The link between the elastic response of these nanoporous materials and their internal pore structure was investigated using positronium annihilation lifetime spectroscopy (PALS), EP, and diffusion experiments. It is shown that the absolute value of the Berkovich indentation modulus is very sensitive to the local pore structure and stiffness of the substrate and can be influenced by densification and/or anisotropic elasticity upon indentation, while on the other hand spherical indentation results are less sensitive to the local pore structure. The comparison of Berkovich and spherical indentation results combined with finite element simulations can potentially reveal changes in the internal structure of the film. For nanoporous films with porosity above the percolation threshold, the elastic modulus results obtained with LAwave and EP agree very well with spherical indentation results. On the other hand, below the percolation threshold, the elastic modulus values determined by these techniques deviate from the spherical indentation results. This was explained in terms of specific technique related effects that appear to be sensitive to the specific arrangement and morphology of the pores.


Asunto(s)
Membranas Artificiales , Módulo de Elasticidad , Porosidad
4.
ACS Nano ; 6(2): 1410-5, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22211667

RESUMEN

Revealing defects and inhomogeneities of physical and chemical properties beneath a surface or an interface with in-depth nanometric resolution plays a pivotal role for a high degree of reliability in nanomanufacturing processes and in materials science more generally. (1, 2) Nanoscale noncontact depth profiling of mechanical and optical properties of transparent sub-micrometric low-k material film exhibiting inhomogeneities is here achieved by picosecond acoustics interferometry. On the basis of the optical detection through the time-resolved Brillouin scattering of the propagation of a picosecond acoustic pulse, depth profiles of acoustical velocity and optical refractive index are measured simultaneously with spatial resolution of tens of nanometers. Furthermore, measuring the magnitude of this Brillouin signal provides an original method for depth profiling of photoelastic moduli. This development of a new opto-acoustical nanometrology paves the way for in-depth inspection and for subsurface nanoscale imaging of inorganic- and organic-based materials.

5.
J Nanosci Nanotechnol ; 11(9): 8363-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097585

RESUMEN

Nanoporous low-kappa films were manufactured by using a 3-step process: co-deposition of a skeleton and porogens by PECVD, porogen removal by remote plasma and UV cure. In this study, the influence of both the variation of the porogen load and the different types of UV-cures on several film characteristics were investigated. Improved kappa-values were observed for increased porogen to skeleton ratios and a broad band cure, where the wavelength of the photons is always higher than 200 nm. However the Young's modulus and hardness decreased correspondingly. These variations can be attributed to the changing density and chemical composition of the different films. A wide range of low-kappa films was obtained by tuning the porogen load and applying different types of UV cures.

6.
Opt Express ; 18(16): 16387-405, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20721026

RESUMEN

A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.


Asunto(s)
Simulación por Computador , Luz , Fotograbar/métodos , Impresión/métodos , Algoritmos , Holografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA