RESUMEN
Exercise intolerance, a hallmark of patients with heart failure (HF), is associated with muscle weakness. However, its causative microcirculatory and muscle characteristics among those with preserved or reduced ejection fraction (HFpEF or HFrEF) phenotype is unclear. The musculoskeletal abnormalities that could result in impaired peripheral microcirculation are sarcopenia and muscle strength reduction in HF, implying lowered oxidative capacity and perfusion affect transport and oxygen utilization during exercise, an essential task from the microvascular muscle function. Besides that, skeletal muscle microcirculatory abnormalities have also been associated with exercise intolerance in HF patients who also present skeletal muscle myopathy. This cross-sectional study aimed to compare the muscle microcirculation dynamics via near-infrared spectroscopy (NIRS) response during an isokinetic muscle strength test and ultrasound-derived parameters (echo intensity was rectus femoris muscle, while the muscle thickness parameter was measured on rectus femoris and quadriceps femoris) in heart failure patients with HFpEF and HFrEF phenotypes and different functional severities (Weber Class A, B, and C). Twenty-eight aged-matched patients with HFpEF (n = 16) and HFrEF (n = 12) were assessed. We found phenotype differences among those with Weber C severity, with HFrEF patients reaching lower oxyhemoglobin (O2Hb, µM) (-10.9 ± 3.8 vs. -23.7 ± 5.7, p = 0.029) during exercise, while HFpEF reached lower O2Hb during the recovery period (-3.0 ± 3.4 vs. 5.9 ± 2.8, p = 0.007). HFpEF with Weber Class C also presented a higher echo intensity than HFrEF patients (29.7 ± 8.4 vs. 15.1 ± 6.8, p = 0.017) among the ultrasound-derived variables. Our preliminary study revealed more pronounced impairments in local microcirculatory dynamics in HFpEF vs. HFrEF patients during a muscle strength exercise, combined with muscle-skeletal abnormalities detected via ultrasound imaging, which may help explain the commonly observed exercise intolerance in HFpEF patients.
Asunto(s)
Insuficiencia Cardíaca , Anomalías Musculoesqueléticas , Anciano , Estudios Transversales , Humanos , Microcirculación , Músculo Esquelético , Fenotipo , Volumen Sistólico/fisiologíaRESUMEN
INTRODUCTION: Exercise training is strongly recommended as a therapeutic approach to treat individuals with heart failure. High-intensity exercise training modalities still controversial in this population. The study aims to preliminary assess the consequences of high-intensity exercise training modalities, aerobic interval training (HIIT) and progressive high circuit-resistance training (CRT), on primarily endothelial function and cardiorespiratory fitness, and secondly on muscle strength and physical performance in heart failure patients. METHODS: This preliminary multicentric randomized controlled trial comprised 23 heart failure patients, aged 56 ± 10 years old, mainly New York Heart Association classification I and II (%), hemodynamically stable, who compromise at least 36 exercise sessions of a randomly assigned intervention (HIIT, CRT or control group). Endothelial function, cardiopulmonary exercise testing, muscle strength and physical performance were completed at baseline and post-intervention. RESULTS: Although no effects on endothelial function; both HIIT and CRT modalities were able to produce a positive effect on [Formula: see text] peak (HIIT = +2.1±6.5, CRT = +3.0±4.2 and control group = -0.1± 5.3 mL/kg/min, time*group p-value<0,05) and METs (HIIT = +0.6±1.8, CRT = +0.9±1.2 and control group = 0±1.6, time*group p-value<0,05). Only HIIT increased isokinetic torque peak (HIIT = +8.8±55.8, CRT = 0.0±60.7 and control group = 1.6±57.6 Nm) matched p-value<0,05. Regarding the physical performance, the CRT modality reduced chair stand test completion time (HIIT = -0.7±3.1, CRT = -3.3±3.2 and control group = -0.3±2.5 s, matched p-value<0,05 and HIIT improved global physical performance(time*group p<0,05). CONCLUSION: This preliminary study trends to indicate for the first time that high-intensity interval training promotes a jointly superior effect compared to progressive high intensity circuit-resistance training by improving cardiorespiratory fitness, muscular strength, and physical performance. Further research with larger cohort is necessary. CLINICAL TRIAL REGISTRATION NUMBER: ReBEC RBR-668c8v.
Asunto(s)
Capacidad Cardiovascular/fisiología , Ejercicio en Circuitos , Endotelio Vascular/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Entrenamiento de Intervalos de Alta Intensidad , Entrenamiento de Fuerza , Anciano , Composición Corporal/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fuerza Muscular/fisiología , Resultado del TratamientoRESUMEN
Background and Objectives: To analyze the effects of aerobic, resistance, and combined training on peripheral and central components related to cardiorespiratory capacity after HTx. Materials and Methods: No time restriction was applied for study inclusion. MEDLINE/PubMed; EMBASE, CENTRAL, and PEDro databases were investigated. Studies reporting heart transplanted patients older than 19 years following aerobic, resistance, and combined training according. The outcomes included: V'O2 peak, VE/V'CO2 slope, heart rate (HR peak), systolic and diastolic blood pressure (SBP and DBP peak), maximum repetition test(1RM), sit-to-stand test, and flow-mediated dilation (FMD). The studies were selected by consensus. Four hundred ninety-two studies initially met the selection criteria. Cochrane handbook was used for abstracting data and assessing data quality and validity. Independent extraction by two observers was applied. Results: Isolated aerobic training leads to a greater increase in V'O2 peak than combined training compared to the control group (p < 0.001, I2 = 0%). However, no significant differences were found in the subgroup comparison (p = 0.19, I2 = 42.1%). HR peak increased similarly after aerobic and combined training. High-intensity interval training (HIIT) was better than moderate continuous intensity to increase the V'O2 after long term in HTx. Still, there is scarce evidence of HIIT on muscle strength and FMD. No change on VE/V'CO2 slope, FMD, and SBP, DBP peak. 1RM and the sit-to-stand test increased after resistance training (p < 0.001, I2 = 70%) and CT (p < 0.001, I2 = 0%) when compared to control. Conclusions: Aerobic and combined training effectively improve VO2 peak and muscle strength, respectively. HIIT seems the better choice for cardiorespiratory capacity improvements. More studies are needed to examine the impact of training modalities on VE/V'CO2 slope and FMD.