RESUMEN
Climate change is a major constraint on the sustainability of the humid tropics, maintaining ecosystem services, food production, and social functioning. Humid tropics play an essential role in C storage and greenhouse gas (GHG) emission reduction. Unfortunately, unplanned economic exploration, human occupation, and lack of knowledge of techniques to maintain ecosystem services negatively affect the humid tropics. In this study, we focused on the mechanisms of GHG emissions, C storage, and their mitigation strategies. This review indicated technologies that can be adopted by farmers in humid tropics to maintain or increase their capacity to store C stocks and reduce GHG emissions. The adoption of climate-smart agriculture technologies and the regulation of ecosystem services markets will accelerate the progress of preserving the humid tropics. Improved management practices, such as proper N fertilizer management and the introduction of N2-fixing legumes, can increase soil C sequestration, providing economic and environmental trade-offs associated with these management strategies. Public and private investments toward knowledge dissemination and technology adoption regarding GHG emissions reduction and soil C storage are needed to allow humid tropics to maintain their critical function of generating environmental and societal benefits.
Asunto(s)
Gases de Efecto Invernadero , Agricultura , Brasil , Carbono , Secuestro de Carbono , Ecosistema , Fertilizantes , Pradera , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Humanos , SueloRESUMEN
This study evaluated the growth, physiology, and coccidiosis infestation of suckling beef calves provided monensin and grazing limpograss (Exp. 1) or bahiagrass (Exp. 2) pastures. Treatments were randomly assigned to pastures (4 pastures/treatment; 3 cow-calf pairs/pasture in Exp. 1; 4 pastures/treatment; 10 cow-calf pairs/pair of pastures in Exp. 2) and comprised of supplementation of 0.40 kg/d of soybean meal added or not with monensin (20 mg/kg of total DM intake) for 112 and 78 days before weaning in Exp. 1 and 2, respectively. In Exp. 1, supplement DM disappearance tended (P = 0.10) to be less for calves supplemented with vs. without monensin, but treatment × day and treatment effects were not observed (P ≥ 0.18) for herbage mass (HM), herbage allowance (HA), cow body condition score (BCS), calf average daily gain (ADG), calf plasma data, and fecal coccidia egg count. In Exp. 2, forage nutritive value, HM and HA, and cow BCS did not differ (P ≥ 0.43) between treatments. Supplemental monensin did not impact (P ≥ 0.78) plasma concentrations of insulin-like growth factor 1 but increased (P ≤ 0.05) calf overall ADG and plasma concentrations on day 78 and reduced plasma concentrations of urea nitrogen (PUN) on day 78 and fecal coccidia egg count on day 78 compared to calves provided no monensin supplementation. Hence, monensin supplementation successfully improved growth performance of creep-fed suckling beef calves, when herbage mass was not a limiting factor and coccidiosis infestation occurred.