Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 7(13): e14108, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31257737

RESUMEN

Lipid mediators including classical arachidonic acid-derived eicosanoids (e.g. prostaglandins and leukotrienes) and more recently identified specialized pro-resolving-mediator metabolites of the omega-3 fatty acids play essential roles in initiation, self-limitation, and active resolution of acute inflammatory responses. In this study, we examined the bioactive lipid mediator profile of human skeletal muscle at rest and following acute resistance exercise. Twelve male subjects completed a single bout of maximal isokinetic unilateral knee extension exercise and muscle biopsies were taken from the m.vastus lateralis before and at 2, 4, and 24 h of recovery. Muscle tissue lipid mediator profile was analyzed via liquid chromatography-mass spectrometry (LC-MS)-based targeted lipidomics. At 2 h postexercise, there was an increased intramuscular abundance of cyclooxygenase (COX)-derived thromboxanes (TXB2 : 3.33 fold) and prostaglandins (PGE2 : 2.52 fold and PGF2α : 1.77 fold). Resistance exercise also transiently increased muscle concentrations of lipoxygenase (LOX) pathway-derived leukotrienes (12-Oxo LTB4 : 1.49 fold and 20-COOH LTB4 : 2.91 fold), monohydroxy-eicosatetraenoic acids (5-HETE: 2.66 fold, 12-HETE: 2.83 fold, and 15-HETE: 1.69 fold) and monohydroxy-docosahexaenoic acids (4-HDoHE: 1.69 fold, 7-HDoHE: 1.58 fold and 14-HDoHE: 2.35 fold). Furthermore, the abundance of CYP pathway-derived epoxy- and dihydroxy-eicosatrienoic acids was increased in 2 h postexercise biopsies (5,6-EpETrE: 2.48 fold, 11,12-DiHETrE: 1.66 fold and 14,15-DiHETrE: 2.23 fold). These data reveal a range of bioactive lipid mediators as present within human skeletal muscle tissue and demonstrate that acute resistance exercise transiently stimulates the local production of both proinflammatory eicosanoids and pathway markers in specialized proresolving mediator biosynthesis circuits.


Asunto(s)
Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos , Ácidos Araquidónicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Humanos , Lipooxigenasa/metabolismo , Masculino , Músculo Esquelético/fisiología , Prostaglandinas/metabolismo , Tromboxanos/metabolismo , Adulto Joven
2.
Front Physiol ; 7: 86, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064890

RESUMEN

PURPOSE: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d(-1)) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. RESULTS: The resistance exercise protocol stimulated a significant increase in the number of CD66b(+) and MPO(+) cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. CONCLUSION: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.

3.
Physiol Rep ; 2(10)2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25344476

RESUMEN

Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor-κB (NF-κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF-κB pathway regulates the early activation of post-exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post-exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post-exercise and analysed for key markers of NF-κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post-exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF-κB p50 protein expression and NF-κB p50 binding activity were lower than pre-exercise at 0 and 3 h post-exercise, but were elevated at 24 h post-exercise. These findings provide novel evidence that two distinct NF-κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF-κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF-κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research.

4.
J Appl Physiol (1985) ; 117(1): 20-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24833778

RESUMEN

Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exercise. Subjects orally ingested 1,200 mg ibuprofen (or placebo control) in three 400-mg doses administered ∼30 min before and ∼6 h and ∼12 h following a bout of unaccustomed resistance exercise (80% one repetition maximum). Muscle biopsies were obtained at rest (preexercise), immediately postexercise (0 h), 3 h postexercise, and at 24 h of recovery. In the placebo (PLA) group, phosphorylation of ERK1/2 (Thr202/Tyr204), ribosomal protein S6 kinase (RSK, Ser380), mitogen-activated kinase 1 (Mnk1, Thr197/202), and p70S6 kinase (p70S6K, Thr421/Ser424) increased at both 0 and 3 h postexercise, with delayed elevation of phospho (p)-p70S6K (Thr389) and p-rpS6 (Ser235/S36 and Ser240/244) at 3 h postexercise. Only p-ERK1/2 (Thr202/Tyr204) remained significantly elevated in the 24-h postexercise biopsy. Ibuprofen treatment prevented sustained elevation of MEK-ERK signaling at 3 h (p-ERK1/2, p-RSK, p-Mnk1, p-p70S6K Thr421/Ser424) and 24 h (p-ERK1/2) postexercise, and this was associated with suppressed phosphorylation of ribosomal protein S6 (Ser235/236 and Ser240/244). Early contraction-induced p-Akt (Ser473) and p-p70S6K (Thr389) were not influenced by ibuprofen, but p-p70S6K (Thr389) remained elevated 24 h postexercise only in those receiving ibuprofen treatment. Early muscle signaling responses to resistance exercise are, in part, ibuprofen sensitive, suggesting that PGs are important signaling molecules during early postexercise recovery.


Asunto(s)
Ejercicio Físico/fisiología , Ibuprofeno/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adulto , Antiinflamatorios no Esteroideos/uso terapéutico , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Extensión de la Cadena Peptídica de Translación/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Adulto Joven
5.
Am J Physiol Regul Integr Comp Physiol ; 305(11): R1281-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24089379

RESUMEN

Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0-3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery.


Asunto(s)
Antiinflamatorios/farmacología , Resistencia a Medicamentos , Ejercicio Físico/fisiología , Ácidos Grasos Insaturados/metabolismo , Ibuprofeno/farmacología , Inflamación/fisiopatología , Metabolismo de los Lípidos/fisiología , Adulto , Eicosanoides/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Adulto Joven
6.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R667-73, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22189669

RESUMEN

Intense resistance exercise causes a significant inflammatory response. NF-κB has been identified as a prospective key transcription factor mediating the postexercise inflammatory response. The purpose of this study was to determine whether a single bout of intense resistance exercise regulates NF-κB signaling in human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis of five recreationally active, but not strength-trained, males (21.9 ± 1.3 yr) prior to, and at 2 and 4 h following, a single bout of intense resistance exercise. A further five subjects (4 males, 1 female) (23 ± 0.89 yr) were recruited as a nonexercise control group to examine the effect of the muscle biopsy protocol on key markers of skeletal muscle inflammation. Protein levels of IκBα and phosphorylated NF-κB (p65), as well as the mRNA expression of inflammatory myokines monocyte chemoattractant protein 1 (MCP-1), IL-6, and IL-8 were measured. Additionally, NF-κB (p65) DNA binding to the promoter regions of MCP-1, IL-6, and IL-8 was investigated. IκBα protein levels decreased, while p-NF-κB (p65) protein levels increased 2 h postexercise and returned to near-baseline levels by 4-h postexercise. Immunohistochemical data verified these findings, illustrating an increase in p-NF-κB (p65) protein levels, and nuclear localization at 2 h postexercise. Furthermore, NF-κB DNA binding to MCP-1, IL-6, and IL-8 promoter regions increased significantly 2 h postexercise as did mRNA levels of these myokines. No significant change was observed in the nonexercise control group. These novel data provide evidence that intense resistance exercise transiently activates NF-κB signaling in human skeletal muscle during the first few hours postexercise. These findings implicate NF-κB in the transcriptional control of myokines known to be central to the postexercise inflammatory response.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Biopsia , Quimiocina CCL2/metabolismo , ADN/metabolismo , Femenino , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Músculo Esquelético/patología , Inhibidor NF-kappaB alfa , Adulto Joven
7.
Nutrients ; 2(8): 781-9, 2010 08.
Artículo en Inglés | MEDLINE | ID: mdl-22254055

RESUMEN

Alcohol consumption within elite sport has been continually reported both anecdotally within the media and quantitatively in the literature. The detrimental effects of alcohol on human physiology have been well documented, adversely influencing neural function, metabolism, cardiovascular physiology, thermoregulation and skeletal muscle myopathy. Remarkably, the downstream effects of alcohol consumption on exercise performance and recovery, has received less attention and as such is not well understood. The focus of this review is to identify the acute effects of alcohol on exercise performance and give a brief insight into explanatory factors.


Asunto(s)
Rendimiento Atlético/fisiología , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Ejercicio Físico/fisiología , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Regulación de la Temperatura Corporal/efectos de los fármacos , Deshidratación/inducido químicamente , Humanos , Hipoglucemia/inducido químicamente , Fatiga Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA