RESUMEN
Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communities and the role of underlying stabilising mechanisms. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and species stability. The magnitude of destabilising effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilises large food webs, regardless of climate warming scenarios.
Asunto(s)
Cadena Alimentaria , Microbiota , Biodiversidad , Cambio Climático , Estado NutricionalRESUMEN
With its network of lotic and lentic habitats that shift during changes in seasonal connection, the tropical and subtropical large-river systems represent possibly the most dynamic of all aquatic environments. Pelagic water samples were collected from Brazilian floodplain lakes (total n = 58) in four flood-pulsed systems (Amazon [n = 21], Araguaia [n = 14], Paraná [n = 15], and Pantanal [n = 8]) in 2011-2012 and sequenced via 454 for bacterial environmental DNA using 16S amplicons; additional abiotic field and laboratory measurements were collected for the assayed lakes. We report here a global comparison of the bacterioplankton makeup of freshwater systems, focusing on a comparison of Brazilian lakes with similar freshwater systems across the globe. The results indicate a surprising similarity at higher taxonomic levels of the bacterioplankton in Brazilian freshwater with global sites. However, substantial novel diversity at the family level was also observed for the Brazilian freshwater systems. Brazilian freshwater bacterioplankton richness was relatively average globally. Ordination results indicate that Brazilian bacterioplankton composition is unique from other areas of the globe. Using Brazil-only ordinations, floodplain system differentiation most strongly correlated with dissolved oxygen, pH, and phosphate. Our data on Brazilian freshwater systems in combination with analysis of a collection of freshwater environmental samples from across the globe offers the first regional picture of bacterioplankton diversity in these important freshwater systems.