Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 14(1): 016003, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30411710

RESUMEN

We analyze the effects of morphology and wing kinematics on the performance of hovering flight. We present a simplified dynamical model with body translational and rotational degrees of freedom that incorporates the flapping, long-axis wing rotation and folding of the wing. To validate our simulation, we compare our results with direct measurements from hovering insects, hummingbirds and bats. Results show that long-axis wing rotation angle (a proxy for pronation) has a significant effect on energy efficiency. For a given wing rotation amplitude, the hovering system has a power-optimal flapping frequency for each stroke-plane orientation, and that frequency closely corresponds to the wingbeat frequencies observed in a diverse range of hummingbird species. We find that larger animals (with larger total mass and wing size), such as bats, require more power to maintain a stable hovering orbit and that hovering with a constant wingspan becomes increasingly impractical with increasing body size. We show, as an exemplar, that for a system of the size of a hovering bat, e.g. Glossophaga soricina, hovering with constant wingspan is dynamically possible, but is implausible and inefficient. For these conditions, hovering with varying wingspan, retracting the wing on the upstroke, is a more realistic hovering modality.


Asunto(s)
Aves/fisiología , Quirópteros/fisiología , Vuelo Animal/fisiología , Insectos/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Robótica/métodos , Alas de Animales/fisiología
2.
PLoS One ; 9(6): e100399, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24979750

RESUMEN

To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.


Asunto(s)
Galliformes/fisiología , Miembro Posterior/fisiología , Modelos Estadísticos , Carrera/fisiología , Animales , Fenómenos Biomecánicos , Simulación por Computador , Marcha/fisiología , Galliformes/anatomía & histología , Miembro Posterior/anatomía & histología , Modelos Anatómicos , Músculo Esquelético/fisiología , Equilibrio Postural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA