Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glia ; 56(7): 775-90, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18293411

RESUMEN

Although Kir4.1 channels are the major inwardly rectifying channels in glial cells and are widely accepted to support K+- and glutamate-uptake in the nervous system, the properties of Kir4.1 channels during vital changes of K+ and polyamines remain poorly understood. Therefore, the present study examined the voltage-dependence of K+ conductance with varying physiological and pathophysiological external [K+] and intrapipette spermine ([SP]) concentrations in Müller glial cells and in tsA201 cells expressing recombinant Kir4.1 channels. Two different types of [SP] block were characterized: "fast" and "slow." Fast block was steeply voltage-dependent, with only a low sensitivity to spermine and strong dependence on extracellular potassium concentration, [K+]o. Slow block had a strong voltage sensitivity that begins closer to resting membrane potential and was essentially [K+]o-independent, but with a higher spermine- and [K+]i-sensitivity. Using a modified Woodhull model and fitting i/V curves from whole cell recordings, we have calculated free [SP](in) in Müller glial cells as 0.81 +/- 0.24 mM. This is much higher than has been estimated previously in neurons. Biphasic block properties underlie a significantly varying extent of rectification with [K+] and [SP]. While confirming similar properties of glial Kir and recombinant Kir4.1, the results also suggest mechanisms underlying K+ buffering in glial cells: When [K+]o is rapidly increased, as would occur during neuronal excitation, "fast block" would be relieved, promoting potassium influx to glial cells. Increase in [K+]in would then lead to relief of "slow block," further promoting K+-influx.


Asunto(s)
Neuroglía/fisiología , Neuronas/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/fisiología , Retina/fisiología , Animales , Células Cultivadas , Electrofisiología , Potasio/metabolismo , Potasio/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Rana pipiens , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Retina/citología
2.
Glia ; 38(3): 256-67, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11968063

RESUMEN

The retinae and brains of larval and adult amphibians survive long-lasting anoxia; this finding suggests the presence of functional K(ATP) channels. We have previously shown with immunocytochemistry studies that retinal glial (Müller) cells in adult frogs express the K(ATP) channel and receptor proteins, Kir6.1 and SUR1, while retinal neurons display Kir6.2 and SUR2A/B (Skatchkov et al., 2001a: NeuroReport 12:1437-1441; Eaton et al., in press: NeuroReport). Using both immunocytochemistry and electrophysiology, we demonstrate the expression of Kir6.1/SUR1 (K(ATP)) channels in adult frog and tadpole Müller cells. Using conditions favoring the activation of K(ATP) channels (i.e., ATP- and spermine-free cytoplasm-dialyzing solution containing gluconate) in Müller cells isolated from both adult frogs and tadpoles, we demonstrate the following. First, using the patch-clamp technique in whole-cell recordings, tolbutamide, a blocker of K(ATP) channels, blocks nearly 100% of the transient and about 30% of the steady-state inward currents and depolarizes the cell membrane by 5-12 mV. Second, inside-out membrane patches display a single-channel inward current induced by gluconate (40 mM) and blocked by ATP (200 microM) at the cytoplasmic side. The channels apparently show two sublevels (each of approximately 27-32 pS) with a total of 85-pS maximal conductance at -80 mV; the open probability follows a two-exponential mechanism. Thus, functional K(ATP) channels, composed of Kir6.1/SUR1, are present in frog Müller cells and contribute a significant part to the whole-cell K+ inward currents in the absence of ATP. Other inwardly rectifying channels, such as Kir4.1 or Kir2.1, may mediate the remaining currents. K(ATP) channels may help maintain glial cell functions during ATP deficiency.


Asunto(s)
Membrana Celular/metabolismo , Larva/metabolismo , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio/metabolismo , Ranidae/metabolismo , Retina/metabolismo , Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfato/deficiencia , Animales , Membrana Celular/efectos de los fármacos , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipoglucemiantes/farmacología , Inmunohistoquímica , Larva/citología , Larva/crecimiento & desarrollo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Rana catesbeiana , Rana pipiens , Ranidae/anatomía & histología , Ranidae/crecimiento & desarrollo , Receptores de Droga , Retina/citología , Retina/crecimiento & desarrollo , Receptores de Sulfonilureas , Tolbutamida/farmacología , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA