Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(15): 1015-1042, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39101615

RESUMEN

Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.


Asunto(s)
ADN Mitocondrial , Evolución Molecular , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Eucariontes/genética , Humanos , Recombinación Genética , Mitocondrias/genética , Mitocondrias/metabolismo , Genes Mitocondriales
2.
Small Methods ; 8(7): e2300928, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38135876

RESUMEN

The viscoelastic properties of the female reproductive tract influence sperm swimming behavior, but the exact role of these rheological changes in regulating sperm energetics remains unknown. Using high-speed dark-field microscopy, the flagellar dynamics of free-swimming sperm across a physiologically relevant range of viscosities is resolved. A transition from 3D to 2D slither swimming under an increased viscous loading is revealed, in the absence of any geometrical or chemical stimuli. This transition is species-specific, aligning with viscosity variations within each species' reproductive tract. Despite substantial drag increase, 2D slithering sperm maintain a steady swimming speed across a wide viscosity range (20-250 and 75-1000 mPa s for bull and human sperm) by dissipating over sixfold more energy into the fluid without elevating metabolic activity, potentially by altering the mechanisms of dynein motor activity. This energy-efficient motility mode is ideally suited for the viscous environment of the female reproductive tract.


Asunto(s)
Motilidad Espermática , Espermatozoides , Humanos , Viscosidad , Masculino , Animales , Espermatozoides/metabolismo , Bovinos , Cola del Espermatozoide/metabolismo , Femenino , Flagelos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA