Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6927, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903762

RESUMEN

Seeking to enhance the strength of the interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) through a combination of atomic and Rashba type spin-orbit coupling (SOC) we studied the strength and the thickness evolution of effective interlayer coupling in Co/Ag/Co trilayers by means of surface sensitive magneto-optical measurements that take advantage of the light penetration depth. Here, we report the observation of oscillatory, thickness-dependent chiral interaction between ferromagnetic layers. Despite the weakness of the Ag atomic SOC, the IL-DMI in our trilayers is orders of magnitude larger than that of known systems using heavy metals as a spacer except of recently reported -0.15 mJ/m2 in Co/Pt/Ru(t)/Pt/Co and varies between ≈ ±0.2 mJ/m2. In contrast to known multilayers Co/Ag/Co promotes in-plane chirality between magnetic layers. The strength of IL-DMI opens up new routes for design of three-dimensional chiral spin structures combining intra- and interlayer DMI and paves the way for enhancements of the DMI strength.

2.
Sci Rep ; 12(1): 13608, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948600

RESUMEN

The classical laws of physics are usually invariant under time reversal. Here, we reveal a novel class of magnetomechanical effects rigorously breaking time-reversal symmetry. These effects are based on the mechanical rotation of a hard magnet around its magnetization axis in the presence of friction and an external magnetic field, which we call spin revolution. The spin revolution leads to a variety of symmetry breaking phenomena including upward propulsion on vertical surfaces defying gravity as well as magnetic gyroscopic motion that is perpendicular to the applied force. The angular momentum of spin revolution differs from those of the magnetic field, the magnetic torque, the rolling axis, and the net torque about the rolling axis. The spin revolution emerges spontaneously, without external rotations, and offers various applications in areas such as magnetism, robotics and energy harvesting.

3.
Sci Rep ; 10(1): 20400, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230140

RESUMEN

Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly magnetized state have multiple applications in logic devices, sensors, and as bits of information. One of the most promising concepts for applying these bits is the racetrack architecture controlled by electric currents or magnetic driving fields. In state-of-the-art racetracks, these fields or currents are applied to the whole circuit. Here, we employ micromagnetic and atomistic simulations to establish a concept for racetrack memories free of global driving forces. Surprisingly, we realize that mixed sequences of topologically distinct objects can be created and propagated over far distances exclusively by local rotation of magnetization at the sample boundaries. We reveal the dependence between chirality of the rotation and the direction of propagation and define the phase space where the proposed procedure can be realized. The advantages of this approach are the exclusion of high current and field densities as well as its compatibility with an energy-efficient three-dimensional design.

4.
Phys Rev Lett ; 122(25): 257202, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31347891

RESUMEN

The interfacial Dzyaloshinkii-Moriya interaction defines a rotational sense for the spin structure in two-dimensional magnetic films and can be used to create chiral magnetic structures like spin spirals and skyrmions in those films. Here, we show by means of atomistic calculations that in heterostructures an interlayer coupling of the Dzyaloshinskii-Moriya type across a spacer can emerge. We quantify this interaction in the framework of the Lévy-Fert model for trilayers consisting of two ferromagnets separated by a nonmagnetic spacer and show that such an interlayer Dzyaloshinkii-Moriya interaction yields nontrivial three-dimensional spin textures across the entire trilayer, which evolve within as well as between the planes and, hence, combine intraplane and interplane chiralities. This analysis opens new perspectives for three-dimensional tailoring of magnetic chirality in multilayers.

5.
Phys Rev Lett ; 117(20): 207202, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886488

RESUMEN

We have employed spin-polarized scanning tunneling microscopy and Monte Carlo simulations to investigate the effect of lateral confinement onto the nano-Skyrmion lattice in Fe/Ir(111). We find a strong coupling of one diagonal of the square magnetic unit cell to the close-packed edges of Fe nanostructures. In triangular islands this coupling in combination with the mismatching symmetries of the islands and of the square nano-Skyrmion lattice leads to frustration and triple-domain states. In direct vicinity to ferromagnetic NiFe islands, the surrounding Skyrmion lattice forms additional domains. In this case a side of the square magnetic unit cell prefers a parallel orientation to the ferromagnetic edge. These experimental findings can be reproduced and explained by Monte Carlo simulations. Here, the single-domain state of a triangular island is lower in energy, but nevertheless multidomain states occur due to the combined effect of entropy and an intrinsic domain wall pinning arising from the skyrmionic character of the spin texture.

6.
Chemphyschem ; 9(9): 1222-40, 2008 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-18553291

RESUMEN

Electric and magnetic multipole moments and polarizabilities are important quantities in studies of intermolecular forces, non-linear optical phenomena, electrostatic, magnetostatic or gravitational potentials and electron scattering. The experimental determination of multipole moments is difficult and therefore the theoretical prediction of these quantities is important. Depending on purposes of the investigation several different definitions of multipole moments and multipole-multipole interactions are used in the literature. Because of this variety of methods it is often difficult to use published results and, therefore, even more new definitions appear. The first goal of this review is to give an overview of mathematical definitions of multipole expansion and relations between different formulations. The second aim is to present a general theoretical description of multipolar ordering on periodic two-dimensional lattices. After a historical introduction in the first part of this manuscript the static multipole expansion in cartesian and spherical coordinates as well as existing coordinate transformations are reviewed. On the basis of the presented mathematical description multipole moments of several symmetric charge distributions are summarized. Next, the established numerical approach for the calculation of multipolar ground states, namely Monte Carlo simulations, are reviewed. Special emphasis is put on the review of ground states in multipolar systems consisting of moments of odd or even order. The last section is devoted to the magnetization reversal in dense packed nanomagnetic arrays, where the magnetic multipole-multipole interactions play an important role. Comparison between the theory and recent experimental results is given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA