Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transplant Direct ; 8(10): e1378, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36176723

RESUMEN

Intestinal transplantation depends on donation after brain death (DBD). Luminal preservation (LP) has been beneficial against preservation injury in previous studies in animal models, but none include DBD. This study aims to investigate whether these benefits occur also with DBD. Methods: Wistar rats (male, N = 9) underwent brain death for 2 h. Thereafter, vascular perfusion was done with University of Wisconsin solution (UW). The small intestine was then explanted and randomized into 3 groups: control (empty segment), LP+PEG (with polyethylene glycol 3350 solution), or LP+UW (with UW), treated and tied shut. Ice-cold UW was used for cold storage. Samples were taken at procurement and after 4 (t = 4) and 8 h (t = 8) of preservation. Histopathological scorings were performed for intestinal preservation injury, subepithelial space, absence of epithelial lining, and hemeoxygenase-1 expression. Results: There was low-level mucosal injury (median intestinal preservation injury score 2) at procurement. At t = 4, bowels treated without LP had more damage than LP-treated samples (control score 4, LP+PEG 2 and LP+UW 2, P < 0.001 control versus LP+UW). At t = 8, no benefit of LP was observed (control 2, LP+PEG 3, LP+UW 2). Subepithelial space increased with time and the presence of LP; epithelial lining was better conserved in LP-treated samples. Hemeoxygenase-1 staining showed increased intensity with increased damage, irrespective of treatment. Conclusions: Luminal perfusion of the small intestine with UW or PEG protects the mucosa in brain-dead rats for up to 4 h. Fewer benefits of LP were found than previously described in non-DBD models. To mimic the clinical situation, DBD should be included in future animal studies on intestinal preservation.

2.
Transplant Direct ; 3(11): e220, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29184909

RESUMEN

BACKGROUND: Intestinal transplantation (ITx) faces many challenges due to the complexity of surgery and to the multiple immunological reactions that lead to the necessity of rigorous follow-up for early detection of acute cellular rejection (ACR). Our aim was to determine the kinetics of ACR using an experimental ITx model, with emphasis in the characterization of the process using different approaches, including the use of functional assays of absorptive and barrier function. METHODS: ITx in rats conducting serial sampling was performed. Clinical monitoring, graft histology, proinflammatory gene expression, and nitrosative stress determination were performed. Also, glucose absorption, barrier function using ovalbumin translocation, and contractile function were analyzed. RESULTS: The model used reproduced the different stages of ACR. Allogeneic ITx recipients showed signs of rejection from postoperative day (POD) 5, with increasing severity until 12 POD. Histological evaluation showed mild rejection in early sampling and severe rejection at late stages, with alterations in all graft layers. IL-6, CXCL 10, IFNg, and nitrite plasmas levels showed behavior coincident with histopathology. Remarkably, allogeneic grafts showed a marked alteration of glucose absorptive capacity from POD 5 that was sustained until endpoint. Coincidently, barrier function alteration was evidenced by luminal ovalbumin translocation to serum. Contractile function was progressively impaired along ACR. CONCLUSIONS: Glucose absorption and barrier function are altered at early stages of ACR when histological alterations or gene expression changes were much subtle. This observation may provide simple evaluation tools that could be eventually translated to the clinics to contribute to early ACR diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA