Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274161

RESUMEN

Polymer additive manufacturing has advanced from prototyping to producing essential parts with improved precision and versatility. Despite challenges like surface finish and wear resistance, new materials and metallic reinforcements in polymers have expanded its applications, enabling stronger, more durable parts for demanding industries like aerospace and structural engineering. This research investigates the tribological behaviour of FFF surfaces by integrating copper and aluminium reinforcement particles into a PLA (polylactic acid) matrix. Pin-on-disc tests were conducted to evaluate friction coefficients and wear rates. Statistical analysis was performed to study the correlation of the main process variables. The results confirmed that reinforced materials offer interesting characteristics despite their complex use, with the roughness of the fabricated parts increasing by more than 300%. This leads to an increase in the coefficient of friction, which is related to the variation in the material's mechanical properties, as the hardness increases by more than 75% for materials reinforced with Al. Despite this, their performance is more stable, and the volume of material lost due to wear is reduced by half. These results highlight the potential of reinforced polymers to improve the performance and durability of components manufactured through additive processes.

2.
Materials (Basel) ; 13(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321743

RESUMEN

The search for sustainability in the Supply Chain (SC) is one of the tasks that most concerns business leaders in all manufacturing sectors because of the importance that the Supply Chain has as a transversal tool and due to the leading role that it has been playing lately. Of all the manufacturing sectors, this study focuses on the aerospace, shipbuilding, and automotive sectors identified as transport. The present study carries out a descriptive review of existing publications in these three sectors in relation to the sustainability of the Supply Chain in its 4.0 adaptation as an update in matters that are in constant evolution. Among the results obtained, Lean practices are common to the three sectors, as well as different technologies focused on sustainability. Furthermore, the results show that the automotive sector is the one that makes the greatest contribution in this sense through collaborative programs that can be very useful to the other two sectors, thus benefiting from the consequent applicable advantages. Meanwhile, the Aerospace and Shipbuilding sectors do not seem to be working on promoting a sustainable culture in the management of the Supply Chain or on including training programs for their personnel in matters related to Industry 4.0.

3.
Materials (Basel) ; 12(12)2019 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-31234610

RESUMEN

Titanium alloys are widely used in important manufacturing sectors such as the aerospace industry, internal components of motor or biomechanical components, for the development of functional prostheses. The relationship between mechanical properties and weight and its excellent biocompatibility have positioned this material among the most demanded for specific applications. However, it is necessary to consider the low machinability as a disadvantage in the titanium alloys features. This fact is especially due to the low thermal conductivity, producing significant increases in the temperature of the contact area during the machining process. In this aspect, one of the main objectives of strategic industries is focused on the improvement of the efficiency and the increase of the service life of the elements involved in the machining of this alloy. With the aim to understand the most relevant effects in the machinability of the Ti6Al4V alloy, an analysis is required of different variables of the machining process like tool wear evolution, based on secondary adhesion mechanisms, and the relation between surface roughness of the work-pieces with the cutting parameters. In this research work, a study on the machinability of Ti6Al4V titanium alloy has been performed. For that purpose, in a horizontal turning process, the influence of cutting tool wear effects has been evaluated on the surface finish of the machined element. As a result, parametric behavior models for average roughness (Ra) have been determined as a function of the machining parameters used.

4.
Materials (Basel) ; 11(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126182

RESUMEN

Plastic matrix composite materials are an excellent choice for structural applications where high strength-weight and stiffness-weight ratios are required. These materials are being increasingly used in diverse industrial sectors, particularly in aerospace. Due to the strict tolerances required, they are usually machined with drilling cycles due to the type of mounting through rivets. In this sense, laser beam drilling is presented as an alternative to conventional drilling due to the absence of tool wear, cutting forces, or vibrations during the cutting process. However, the process carries with it other problems that compromise the integrity of the material. One of these is caused by the high temperatures generated during the interaction between the laser and the material. In this work, variance analysis is used to study the influence of scanning speed and frequency on macro geometric parameters, surface quality, and defects (taper and heat affected zone). Also, in order to identify problems in the wall of the drill, stereoscopic optical microscopy (SOM) and scanning electron microscopy (SEM) techniques are used. This experimental procedure reveals the conditions that minimize deviations, defects, and damage in machining holes.

5.
Materials (Basel) ; 11(7)2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022001

RESUMEN

One of the main criteria for the establishment of the performance of a forming process by material removal is based on cutting tool wear. Wear is usually caused by different mechanisms, however, only one is usually considered as predominant or the controller of the process. This experimental research is focused on the application of Pin-on-Disc wear tests, in which the tribological interference between UNS A92024-T3 Aluminum⁻Copper alloy and tungsten carbide (WC⁻Co) has been studied. The main objective of this study is focused on the determination of the predominant wear mechanisms involved in the process, as well as the characterization of the sliding and friction effects by using SEM and Energy Dispersion Spectroscopy (EDS) techniques, as applied to WC⁻Co (cutting tool material)/Al (workpiece material) which are widely used in the aerospace industry. Performed analysis prove the appearance of abrasive wear mechanisms prior to adhesion. This fact promotes adhesion mechanisms in several stages because of the surface quality deterioration, presenting different alloy composition in the form of a Built-Up Layer (BUL)/Built-Up Edge (BUE).

6.
Materials (Basel) ; 12(1)2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30598017

RESUMEN

The incorporation of plastic matrix composite materials into structural elements of the aeronautical industry requires contour machining and drilling processes along with metallic materials prior to final assembly operations. These operations are usually performed using conventional techniques, but they present problems derived from the nature of each material that avoid implementing One Shot Drilling strategies that work separately. In this work, the study focuses on the evaluation of the feasibility of Abrasive Waterjet Machining (AWJM) as a substitute for conventional drilling for stacks formed of Carbon Fiber Reinforced Plastic (CFRP) and aluminum alloy UNS A97050 through the study of the influence of abrasive mass flow rate, traverse feed rate and water pressure in straight cuts and drills. For the evaluation of the straight cuts, Stereoscopic Optical Microscopy (SOM) and Scanning Electron Microscopy (SEM) techniques were used. In addition, the kerf taper through the proposal of a new method and the surface quality in different cutting regions were evaluated. For the study of holes, the macrogeometric deviations of roundness, cylindricity and straightness were evaluated. Thus, this experimental procedure reveals the conditions that minimize deviations, defects, and damage in straight cuts and holes obtained by AWJM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA