Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz. j. med. biol. res ; 48(9): 813-821, Sept. 2015. tab, ilus
Artículo en Inglés | LILACS | ID: lil-756408

RESUMEN

Resistance training evokes myocardial adaptation; however, the effects of a single resistance exercise session on cardiac performance are poorly understood or investigated. This study aimed to investigate the effects of a single resistance exercise session on the myocardial contractility of spontaneously hypertensive rats (SHRs). Male 3-month-old SHRs were divided into two groups: control (Ct) and exercise (Ex). Control animals were submitted to sham exercise. Blood pressure was measured in conscious rats before the exercise session to confirm the presence of arterial hypertension. Ten minutes after the exercise session, the animals were anesthetized and killed, and the hearts were removed. Cardiac contractility was evaluated in the whole heart by the Langendorff technique and by isometric contractions of isolated left ventricular papillary muscles. SERCA2a, phospholamban (PLB), and phosphorylated PLB expression were investigated by Western blot. Exercise increased force development of isolated papillary muscles (Ex=1.0±0.1 g/mg vs Ct=0.63±0.2 g/mg, P<0.05). Post-rest contraction was greater in the exercised animals (Ex=4.1±0.4% vs Ct=1.7±0.2%, P<0.05). Papillary muscles of exercised animals developed greater force under increasing isoproterenol concentrations (P<0.05). In the isolated heart, exercise increased left ventricular isovolumetric systolic pressure (LVISP; Δ +39 mmHg; P<0.05) from baseline conditions. Hearts from the exercised rats presented a greater response to increasing diastolic pressure. Positive inotropic intervention to calcium and isoproterenol resulted in greater LVISP in exercised animals (P<0.05). The results demonstrated that a single resistance exercise session improved myocardial contractility in SHRs.


Asunto(s)
Animales , Masculino , Ratas , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Contracción Miocárdica/fisiología , Condicionamiento Físico Animal/fisiología , Ratas Endogámicas SHR
2.
Braz. j. med. biol. res ; 46(2): 178-185, 01/fev. 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-668775

RESUMEN

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.


Asunto(s)
Animales , Masculino , Hipertensión/fisiopatología , Contracción Miocárdica/efectos de los fármacos , Miosinas/efectos de los fármacos , Compuestos Organometálicos/farmacología , Adenosina Trifosfatasas/efectos de los fármacos , Activación Enzimática , Hipertensión/enzimología , Contracción Miocárdica/fisiología , Miosinas/fisiología , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA