Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122987, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327500

RESUMEN

Herein we unequivocally identify the mechanism of zeolite-catalysed thermal degradation of pesticide, employing Fourier-transform infrared spectroscopy (FTIR), Raman and mass spectrometry following temperature decomposition (TPDe/MS). We demonstrate that Y zeolite can effectively adsorb a significant amount of acetamiprid both in a single trial (168 mg/g) and in 10 cycles (1249 mg/g) with intermittent thermal regeneration at 300 °C. Sectional vibrational analysis of acetamiprid two-stage thermal degradation is performed for pristine and supported pesticide. The acetamiprid Raman spectral changes appear at 200 °C, while partial carbonization occurs at 250 °C. The gradual disappearance of the FTIR bands of acetamiprid is seen up to 270 °C when two Raman signature bands for carbonised material emerged. The TPDe/MS profiles reveal the evolution of mass fragments - in the first step, cleavage of the CC bond occurs between the aromatic core of the molecule and its tail-end, followed by cleavage of the CN bond. The mechanism of adsorbed acetamiprid degradation follows the same step, at significantly lower temperatures, as the process is catalysed by the interaction of acetamiprid nitrogens and zeolite support. Reduced temperature degradation allows for a quick recovery process that leaves 65% efficacy after 10 cycles. After numerous cycles of recovery, a subsequent one-time heat treatment at 700 °C completely restores initial efficacy. The efficient adsorption, novel details on degradation mechanism and ease of regeneration procedure place the Y zeolite at the forefront of future all-encompassing environmental solutions.


Asunto(s)
Plaguicidas , Zeolitas , Zeolitas/química , Neonicotinoides , Temperatura
2.
J Funct Biomater ; 14(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36976097

RESUMEN

Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. The effects of the tested compounds on cell viability were evaluated using in vitro methylthiazol-tetrazolium (MTT) colorimetric technique against human colorectal carcinoma (cell line HCT-116) and MRC-5 fibroblasts. Zeolite structure remained unchanged during homogeneous drug impregnation with achieved drug loadings in the 18-21 mg/g range. The highest drug release, in the µM concentration range, with favourable kinetics was established for zeolite-supported 9-aminoacridine. The acridine delivery via zeolite carrier is viewed in terms of solvation energy and zeolite adsorption sites. The cytotoxic effect of supported acridines on HCT-116 cells reveals that the zeolite carrier improves toxicity, while the highest efficiency is displayed by zeolite-impregnated 9-aminoacridine. The 9-aminoacridine delivery via zeolite carrier favours healthy tissue preservation while accompanying increased toxicity toward cancer cells. Cytotoxicity results are well correlated with theoretical modelling and release study, providing promising results for applicative purposes.

3.
Materials (Basel) ; 16(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770026

RESUMEN

Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal-organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g-1), electrical conductivity (up to 0.24 S cm-1), and specific capacitance, Cspec, (up to 238.2 F g-1 at 10 mV s-1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1-10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g-1 and 341 F g-1, respectively. The developed composites represent promising electrode materials for supercapacitors.

4.
Adv Mater ; 35(5): e2206569, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373557

RESUMEN

With recent advances in the field of single-atoms (SAs) used in photocatalysis, an unprecedented performance of atomically dispersed co-catalysts has been achieved. However, the stability and agglomeration of SA co-catalysts on the semiconductor surface may represent a critical issue in potential applications. Here, the photoinduced destabilization of Pt SAs on the benchmark photocatalyst, TiO2 , is described. In aqueous solutions within illumination timescales ranging from few minutes to several hours, light-induced agglomeration of Pt SAs to ensembles (dimers, multimers) and finally nanoparticles takes place. The kinetics critically depends on the presence of sacrificial hole scavengers and the used light intensity. Density-functional theory calculations attribute the light induced destabilization of the SA Pt species to binding of surface-coordinated Pt with solution-hydrogen (adsorbed H atoms), which consequently weakens the Pt SA bonding to the TiO2 surface. Despite the gradual aggregation of Pt SAs into surface clusters and their overall reduction to metallic state, which involves >90% of Pt SAs, the overall photocatalytic H2 evolution remains virtually unaffected.

5.
J Hazard Mater ; 436: 129226, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739746

RESUMEN

All remediation pathways in aqueous solutions come down to three dominant ones - physical, chemical, and combinations thereof. Materials proposed for adsorption and oxidative degradation can induce positive or negative effects on cells compared to the pollutants themselves. Present research deals with the effects different methods for pesticide remediation have and how they impact cytotoxicity. With this particular intention, Fe-modified zeolites (obtained via citrate/oxalate complexes) of three zeotypes (MFI, BEA and FAU) were prepared and tested as adsorbents and Fenton catalysts for the removal of the acetamiprid pesticide. The materials are characterized by AFM, FTIR spectroscopy and ICP-OES. A different effect of the zeolite framework and modification route was found among the samples, which leads to pronounced adsorption (FAU), efficient Fenton degradation (MFI) or synergistic effect of both mechanisms (BEA). The cytotoxic effects of acetamiprid in the presence of zeolites, in pristine and modified forms, were tested on the MRC-5 human fibroblast cell line. A complete survey of the toxicity effect behind different pesticide removal methods is presented. Since neither adsorption nor catalytic degradation is the best option for pesticide removal, the focus is shifted to a combination of these methods, which proved to be optimal for pesticide toxicity reduction.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Zeolitas , Adsorción , Humanos , Neonicotinoides/toxicidad , Plaguicidas/química , Contaminantes Químicos del Agua/química , Zeolitas/química
6.
Mol Inform ; 41(10): e2100256, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35393780

RESUMEN

Human aldo-keto reductase 1C isoforms (AKR1C1-C4) catalyze reduction of endogenous and exogenous compounds, including therapeutic drugs, and are associated with chemotherapy resistance. AKR1C2 is involved in metastatic processes and is a target for the treatment of various cancers. Here we used molecular docking to explore the potential of a series of eleven bile acid methyl esters as AKR1C2 inhibitors. Autodock 4.2 ranked 10 of the 11 test compounds above a decoy set generated based on ursodeoxycholic acid, a known AKR1C2 inhibitor, while 5 of these 10 ranked above 94 % of decoys in Autodock Vina. Seven inactives reported in the literature not to inhibit AKR1C2 ranked below the decoy threshold: 5 of these are specific inhibitors of AKR1C3, a related isoform. Using the same parameters, Autodock Vina identified steroidal analogs of AKR1C substrates, bile acids, and AKR1C inhibitors in the top 5 % of a virtual screen of a natural product library. In experimental assays, 6 out of 11 of the tested bile acid methyl esters inhibited >50 % of AKR1C2 activity, while 2 compounds were strong AKR1C3 inhibitors. Potential off-target interactions with the glucocorticoid receptor were measured using a yeast-based fluorescence assay, where results suggest that the methyl ester could interfere with binding. The top ranking compound based on docking and experimental results showed dose-dependent inhibition of AKR1C2 with an IC50 of ∼3.6 µM. Molecular dynamics simulations (20 ns) were used to explore potential interactions between a bile acid methyl ester and residues in the AKR1C2 active site. Our molecular docking results identify AKR1C2 as a target for bile acid methyl esters, which combined with virtual screening results could provide new directions for researchers interested in synthesis of AKR1C inhibitors.


Asunto(s)
Productos Biológicos , Simulación de Dinámica Molecular , Aldo-Ceto Reductasas/metabolismo , Ácidos y Sales Biliares , Ésteres , Humanos , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides , Ácido Ursodesoxicólico
7.
RSC Med Chem ; 12(2): 278-287, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046616

RESUMEN

Herein, we present microwave-assisted AlCl3 catalyzed oxidation of bile acid hydroxyl groups in the presence of Oxone® in water media. Significant rate enhancements were observed for Wolff-Kishner reduction of synthesized bile acids oxo derivatives to the 5ß-cholanic acid. Reaction of amidation of the simplest bile acid and aminolysis of the deoxycholic acid was accomplished in the absence of solvent and catalysts under sealed vessel microwave conditions. Because 5ß-cholanic acid reportedly modulates glucocorticoid receptor signaling in cell models of Parkinson's disease, we tested the affinity of 5ß-cholanic acid and deoxycholic acid derivatives for the glucocorticoid receptor in vitro using a yeast-based fluorescent screen. Treatment of GR-expressing yeast with prednisolone resulted in a dose-dependent increase in fluorescence; whereas 5ß-cholanic acid binds to the glucocorticoid receptor with more moderate affinity. Similarly, molecular docking also suggests that 5ß-cholanic acid can bind to the glucocorticoid receptor, with similar geometry to known GR ligands.

8.
Environ Sci Process Impacts ; 22(11): 2199-2211, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975257

RESUMEN

This study investigated the environmental application of FAU type zeolites modified with cationic surfactants (cetylpyridinium chloride, tetrapropylammonium chloride and benzalkonium chloride). Adsorbent characterization was conducted using Fourier-transform infrared and Raman spectroscopy, thermogravimetry and differential thermal analysis, atomic force microscopy and X-ray powder diffraction. The efficiency for tannic acid adsorption from aqueous solution on the surface of prepared composites is studied and the adsorption process was modelled with different isotherm equations. Surfactant modifications of zeolites led to improved adsorption properties compared to FAU zeolites alone. The proposed mechanism controlling the adsorption of tannic acid onto surfactant modified zeolites mainly relies on π-π and hydrophobic interactions. The investigated materials are promising adsorbents for tannic acid and similar phenolics and may be important for environmental and dietary aspects of polyphenol persistence and usage. Further on, functionalized zeolites were studied for insecticide acetamiprid removal, prior to and after tannic acid retention. Promising findings of insecticide co-adsorption with tannic acid led to cytotoxicity evaluation. The cytotoxicity modulation effect of zeolites and tannic acid on acetamiprid points to the essential role of both components in insecticide toxicity reduction.


Asunto(s)
Plaguicidas , Zeolitas , Adsorción , Plaguicidas/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/toxicidad , Taninos
9.
Sci Total Environ ; 735: 139530, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32473436

RESUMEN

Novel composites of BEA zeolite and silver tungstophosphate were prepared by different procedures: two-step impregnation, ion-exchange, and as physical mixtures with varying component mass ratios. Composites were characterized using Atomic force microscopy, Infrared, Raman and Atomic absorption spectroscopy, and results were related to adsorption properties and antimicrobial efficiencies of the composites. Prepared samples were tested as antimicrobial agents for fungal and different bacterial strains, as well as for adsorbents for pesticide nicosulfuron in aqueous solutions by using High-performance liquid chromatography. Experimental conditions for batch adsorption testing were optimized in order to efficiently eliminate nicosulfuron from aqueous solutions, while enabling antimicrobial activity of these advanced materials. Antimicrobial efficiency of composites was verified, and indicated that silver ion persistence in the solid phase is of utmost significance for the antimicrobial activity. Spectroscopic investigation revealed interaction of the silver tungstophosphate active phase and the zeolite framework, giving evidence of uniform distribution of active sites in the synthesized materials that proved to be essential for adsorption application. The best obtained adsorption capacity, as well as highest antimicrobial efficiency, is found for composite samples prepared by two-step impregnation with (BEA: silver tungstophosphate) mass ratio 2:1. The amount of nicosulfuron removed from water suspension was 38.2 mg per gram of composite, and the minimum inhibitory concentration determined for all investigated gram-negative bacteria was 125 µg mL-1.


Asunto(s)
Antiinfecciosos , Plaguicidas , Zeolitas , Adsorción , Plata
10.
J Environ Sci (China) ; 81: 136-147, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30975316

RESUMEN

Potassium tungstophosphate is supported on BEA zeolite by in situ synthesis for glyphosate removal. Spectroscopic measurements identified hydrogen bonding as a primal interaction of potassium salt and BEA zeolite. Composites are evaluated for glyphosate herbicide removal and adsorption process is analyzed using two isotherm models. Obtained adsorption capacities for all prepared composites lay between 45.2 and 92.2 mg of glyphosate per gram of investigated composite. Suspension acidity revealed that glyphosate is adsorbed mainly in the zwitter-ion form at the composite surface while the amount of potassium salt in the composites is crucial for the adsorption application. Exceptional adsorption behavior is postulated to come from a high degree of homogeneity among surface active sites which is confirmed by different experimental methods. Temperature programmed desorption of glyphosate coupled with mass spectrometer detected one broad, high-temperature peak which represents overlapped desorption processes from active sights of similar strength. Introduction of potassium tungstophosphate affects active sites present in BEA zeolite for glyphosate desorption and significantly increases the amount of adsorbed pesticide in comparison to BEA zeolite. Supporting of potassium tungstophosphate on BEA zeolite via in situ synthesis procedure enables the formation of highly efficient adsorbents and revealed their perspective environmental application.


Asunto(s)
Modelos Químicos , Plaguicidas/química , Potasio/química , Zeolitas/química , Adsorción , Glicina/análogos & derivados , Glifosato
11.
J Mater Chem B ; 6(36): 5812-5822, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254988

RESUMEN

Refined diatomite from the Kolubara coal basin (Serbia) was inorganically functionalized through a simple, one-pot, non-time-consuming procedure. Model drug ibuprofen was adsorbed on the functionalized diatomite under optimized conditions providing high drug loading (∼201 mg g-1). Physicochemical characterization was performed on the starting and modified diatomite before and after ibuprofen adsorption. Dissolution testing was conducted on comprimates containing the drug adsorbed on the modified diatomite (composite) and those containing a physical mixture of the drug with the modified diatomite. The antihyperalgesic and the antiedematous activity of ibuprofen from both composites and physical mixtures were evaluated in vivo employing an inflammatory pain model in rats. Functionalization and subsequent drug adsorption had no significant effect on the diatomite ordered porous structure. Two forms of ibuprofen most likely coexisted in the adsorbed state - the acidic form and a salt/complex with aluminium. Both comprimate types showed extended ibuprofen release in vitro, but no significant influence on the duration of the ibuprofen effect was observed upon in vivo application of the composite or physical mixture. However, both the composite and the physical mixture were more effective than equivalent doses of ibuprofen in pain suppression in rats. This potentiation of the ibuprofen antihyperalgesic effect may result from the formation of the drug complex with the carrier and can be of clinical relevance.

12.
Int J Pharm ; 496(2): 466-74, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26498370

RESUMEN

Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier.


Asunto(s)
Tierra de Diatomeas/química , Diclofenaco/administración & dosificación , Portadores de Fármacos , Animales , Diclofenaco/química , Ratones , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Molecules ; 19(1): 713-25, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24402202

RESUMEN

The essential oils of three different growth stages of Trifolium pratense L. (TP1, TP2 and TP3) were investigated by gas chromatography-mass spectrometry and tested for their antioxidant and antimicrobial activities. The highest content of volatile compounds was found in the essential oil sample TP1, where terpenes such as ß-myrcene (4.55%), p-cymene (3.59%), limonene (0.86%), tetrahydroionone (1.56%) were highlighted due to their biological activity. The antioxidant activity was determined by following the scavenging capacity of the essential oils for the free radicals DPPH·, NO· and O2·-, as well as effects of the investigated oils on lipid peroxidation (LP). In all three cases, the sample TP1 showed the best radical-capturing capacity for DPPH· (27.61±0.12 µg/mL), NO· (16.03±0.11 µg/mL), O2·- (16.62±0.29 µg/mL) and also had the best lipid peroxidation effects in the Fe2+/ascorbate induction system (9.35±0.11 µg/mL). Antimicrobial activity was evaluated against the following bacteria cultures: Escherichia coli (ATCC10526), Salmonella typhimurium (ATCC 14028), Staphylococcus aureus (ATCC 11632) and Bacillus cereus (ATCC 10876). None of the examined essential oil samples showed inhibitory effects on the tested bacterial strains.


Asunto(s)
Depuradores de Radicales Libres/química , Aceites de Plantas/química , Trifolium/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Compuestos de Bifenilo/química , Escherichia coli/efectos de los fármacos , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Cromatografía de Gases y Espectrometría de Masas , Liposomas/química , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/química , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología , Oxidación-Reducción , Picratos/química , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/farmacología , Salmonella typhimurium/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Superóxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA