Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383656

RESUMEN

The equimolar oxide mixture ß-Ga2O3-α-Fe2O3 was subjected to high-energy ball milling (HEBM) with the aim to obtain the nanoscaled GaFeO3 ortho-ferrite. X-ray diffraction, 57Fe Mössbauer spectroscopy, and transmission electron microscopy were used to evidence the phase structure and evolution of the equimolar nano-system ß-Ga2O3-α-Fe2O3 under mechanochemical activation, either as-prepared or followed by subsequent calcination. The mechanical activation was performed for 2 h to 12 h in normal atmosphere. After 12 h of HEBM, only nanoscaled (~20 nm) gallium-doped α-Fe2O3 was obtained. The GaFeO3 structure was obtained as single phase, merely after calcination at 950 °C for a couple of hours, of the sample being subjected to HEBM for 12 h. This temperature is 450 °C lower than used in the conventional solid phase reaction to obtain gallium orthoferrite. The optical and magnetic properties of representative nanoscaled samples, revealing their multifunctional character, were presented.

2.
Nanomaterials (Basel) ; 6(11)2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28335342

RESUMEN

The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO2 nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. These particles were used to impregnate polyester (PES) materials which have been evaluated for their morphology, photocatalytic performance, antimicrobial activity against bacterial reference strains, and in vitro biocompatibility on human skin fibroblasts. Microscopic examination and quantitative assays have been used to evaluate the cellular morphology and viability, cell membrane integrity, and inflammatory response. All treated PES materials specifically inhibited the growth of Gram-negative bacilli strains after 15 min of contact, being particularly active against Pseudomonas aeruginosa. PES fabrics treated with photocatalysts did not affect cell membrane integrity nor induce inflammatory processes, proving good biocompatibility. These results demonstrate that the treatment of PES materials with TiO2-1% Fe-N particles could provide novel biocompatible fabrics with short term protection against microbial colonization, demonstrating their potential for the development of innovative textiles that could be used in biomedical applications for preventing patients' accidental contamination with microorganisms from the hospital environment.

3.
Materials (Basel) ; 7(1): 106-129, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-28788444

RESUMEN

We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5-8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge-Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA